• Title/Summary/Keyword: Integral Control

Search Result 1,248, Processing Time 0.032 seconds

Cusum Control Chart for Monitoring Process Variance (공정분산 관리를 위한 누적합 관리도)

  • Lee, Yoon-Dong;Kim, Sang-Ik
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.3
    • /
    • pp.149-155
    • /
    • 2005
  • Cusum control chart is used for the purpose of controling the process mean. We consider the problem related to cusum chart for controling process variance. Previous researches have considered the same problem. The main difficulty shown in the related researches was to derive the ARL function which characterizes the properties of the chart. Sample variance, differently with sample mean, follows chi-squared type distribution, even when the quality characteristics are assumed to be normally distributed. The ARL function of cusum is described by a type of integral equation. Since the solution of the integral equation for non-normal distribution is not known well, people used simulation method instead of solving the integral equation directly, or approximation method by taking logarithm of the sample variance. Recently a new method to solve the integral equation for Erlang distribution was published. Here we consider the steps to apply the solution to the problem of controling process variance.

Auto-tuning of PID/PIDA Controllers based on Step-response (스텝응답에 기반한 PID/PIDA 제어기의 자동동조)

  • Ahn, Kyung-Pil;Lee, Jun-Sung;Lim, Jae-Sik;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.974-981
    • /
    • 2009
  • In this paper, a method of auto-tuning of PID (Proportional-Integral-Derivative) and PIDA (Proportional-Integral-Derivative-Acceleration) controllers is proposed that can be applied to a time-delayed second order model. The proposed identification method is based on step responses, but it can be easily automated rising digital controller unlike the existing graphical identification methods. We provide a ways to yield parameter identifications which is independent to initial values of the plants. The tuning rule is based on the pole-placement strategy and is formulated so that it can be implemented using a digital controller with ease.

A Study on the Integral Sliding Mode Control (적분 슬라이딩 모드제어에 관한 고찰)

  • Park, Seung-Kyu;Kim, Min-Chan;Ahn, Ho-Kyun;Choi, Sung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2262-2264
    • /
    • 2002
  • In this paper, the integral sliding mode controller developed by Utkin is considered. It is pointed out that some theoretical consideration has to be added to that controller. Another type of integral sliding mode controller developed by Park is also considered. These integral sliding mode controllers have very important results in the extension of the robustness of sliding mode to the other linear control technique.

  • PDF

A Poof of Utkin's Theorem for the SI Uncertain Integral linear Case (Utkin 정리의 단일입력 불확실 적분 선형 시스템에 대한 증명)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.843-847
    • /
    • 2011
  • In this note, a proof of Utkin's theorem is presented for the SI(Single Input) uncertain integral linear case. The invariance theorem with respect to the two transformation methods so called the two diagonalization methods are proved clearly and comparatively for SI uncertain integral linear systems. With respect to the sliding surface transformation, the equation of the sliding mode, the sliding surface is invariant. Both the applied control inputs have the same gains. By means of the two transformation methods the same results can be obtained. Through an illustrative example and simulation study, the usefulness of the main results is verified.

Cusum control chart for monitoring process variance (공정분산 관리를 위한 누적합 관리도)

  • Lee, Yoon-Dong;Kim, Sang-Ik
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.135-141
    • /
    • 2006
  • Cusum control chart is used for the purpose of controling the process mean. We consider the problem related to cusum chart for controling process variance. Previous researches have considered the same problem. The main difficulty shown in the related researches was to derive the ARL function which characterizes the properties of the chart. Sample variance, differently with sample mean, follows chi-squared type distribution, even when the quality characteristics are assumed to be normally distributed. The ARL function of cusum is described by a type of integral equation. Since the solution of the integral equation for non-normal distribution is not known well, people used simulation method instead of solving the integral equation directly, or approximation method by taking logarithm of the sample variance. Recently a new method to solve the integral equation for Erlang distribution was published. Here we consider the steps to apply the solution to the problem of controling process variance.

  • PDF

Incremental Passivity Based Control for DC-DC Boost Converters under Time-Varying Disturbances via a Generalized Proportional Integral Observer

  • He, Wei;Li, Shihua;Yang, Jun;Wang, Zuo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.147-159
    • /
    • 2018
  • In this paper, the voltage tracking control of a conventional DC-DC boost converter affected by unknown, time-varying circuit parameter perturbations is investigated. Based on the fundamental property of incremental passivity, a passivity based control law is designed. Then, to obtain a better disturbance rejection property, two generalized proportional integral (GPI) observers are employed to estimate the time-varying uncertainties in the output voltage and inductor current channels, and the estimated values are applied as feedforward compensation. Moreover, the global trajectory tracking performance of a system with disturbances is ensured under the composite controller. Finally, simulation and experiment studies are provided to demonstrate the feasibility and effectiveness of the proposed method. The results show that the proposed controller delivers a promising disturbance rejection capability as well as a good nominal tracking performance.

Integral Sliding-based Dynamic Control Method using Genetic Algorithm on an Omnidirectional Mobile Robot (전방향 모바일 로봇에서 유전알고리즘을 이용한 적분 슬라이딩 기반 동적 제어 기법)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1817-1825
    • /
    • 2021
  • Omnidirectional mobile robots can be mobile in any direction without changing the robot's direction, making them easy to apply in many applications and providing excellent maneuverability. Omnidirectional mobile robots have non-linear dynamic components such as friction, making them difficult to model accurately. In this paper, we linearize the mobile robot system using the mobile robot's inverse dynamics and integral sliding mode control method to remove these nonlinear components. And the position and velocity gains are optimized using a genetic algorithm to realize the optimal performance of the proposed system control method. As a result of the performance evaluation, the genetic algorithm's control method showed superior performance than the control method with an arbitrary gain. And the proposed inverse dynamic and integral sliding mode control method can be applied to other control methods. It can be beneficial for designing a linear control system.

A Novel Controller Design Method for Time-Delay System with the Integral Mode

  • Ma, Jin-Suk;Kwon, Woo-Hyen;Kim, Sun-Ja;Kim, Ga-Gyu;Lee, Hyung-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.62.5-62
    • /
    • 2001
  • In this paper, we present a novel control method for the plant with an integral mode and long time delay. In a constant time delay problem, one can independently adjust the set response and the disturbance response by the proposed DTC without any additional control variables. To verify the effectiveness of the proposed DTC, it is compared with Matausek´s DTC and Normey-rico´s DTC which were recently proposed. Simulation results are given and the superior performance of the proposed scheme over the conventional schemes are successfully verified.

  • PDF

Necessary conditions in the optimal control of nonlinear integral equations

  • Wang, Fu-Yang;Lee, In-Beum;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.947-951
    • /
    • 1989
  • A Class of nonlinear distributed parameter control problems is first stated in a partial differential equation form in multi-index notion and then converted into an integral equation form. Necessary conditions for optimality in the form of maximum principle are then derived in Sobolev space W$^{l}$, p/(1 leq. p .leq. .inf.)..

  • PDF

Robust Control of Horizontal-Shaft Magnetic Bearing System considering Pole Assignment Region (극 영역을 고려한 횡축형 자기 베어링 시스템의 로버스트 제어)

  • 김창화;추만석;양주호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.21-21
    • /
    • 2000
  • In this paper, we design the state feedback gain using linear matrix inequality(LMI) to the multiobjective synthesis, in the magnetic bearing system with integral type servo system. The design objectives can be a H$\_$$\infty$/ performance, asymptotic disturbance rejection, time-domain constraints, on the closed-lnp pole location. To the end, we investigated the validity of the designed controller through results of simulation.

  • PDF