• Title/Summary/Keyword: Integral Absolute Value

Search Result 32, Processing Time 0.016 seconds

A Study on Electromyogram Signals Recognition Technique using Neural Network and Genetic Algorithms (신경회로망과 유전알고리즘을 이용한 근전신호 인식기법)

  • Shin, Chul-Kyu;Lee, Sang-Min;Lee, Eun-Sil;Kwon, Jang-Woo;Jang, Young-Gun;Hong, Seung-Hong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.176-183
    • /
    • 1998
  • A new recognition technique using neural network coupled with Genetic Algorithms (GAs) was proposed. This technique concentrate on efficient Electromyography signal recognition through out improving neural network's several demerits. GAs paly a role of selecting Multilayer Perceptron's optimized initial connection weights by its typical global search. Electro Myography signal was pre-processed with Hidden Markov Model (HMM) in order to refect its time-varying property into input pattern except other features such as Zero Crossing Number(ZCN) and Integral Absolute Value (IAV). Results for 6 primitive motions show that the suggested technique has better performance in learning time and recognition rates than already established ordinary methods. Moreover, it performed stable recognition without convergence into a local minimum.

  • PDF

Adaptable Center Detection of a Laser Line with a Normalization Approach using Hessian-matrix Eigenvalues

  • Xu, Guan;Sun, Lina;Li, Xiaotao;Su, Jian;Hao, Zhaobing;Lu, Xue
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.317-329
    • /
    • 2014
  • In vision measurement systems based on structured light, the key point of detection precision is to determine accurately the central position of the projected laser line in the image. The purpose of this research is to extract laser line centers based on a decision function generated to distinguish the real centers from candidate points with a high recognition rate. First, preprocessing of an image adopting a difference image method is conducted to realize image segmentation of the laser line. Second, the feature points in an integral pixel level are selected as the initiating light line centers by the eigenvalues of the Hessian matrix. Third, according to the light intensity distribution of a laser line obeying a Gaussian distribution in transverse section and a constant distribution in longitudinal section, a normalized model of Hessian matrix eigenvalues for the candidate centers of the laser line is presented to balance reasonably the two eigenvalues that indicate the variation tendencies of the second-order partial derivatives of the Gaussian function and constant function, respectively. The proposed model integrates a Gaussian recognition function and a sinusoidal recognition function. The Gaussian recognition function estimates the characteristic that one eigenvalue approaches zero, and enhances the sensitivity of the decision function to that characteristic, which corresponds to the longitudinal direction of the laser line. The sinusoidal recognition function evaluates the feature that the other eigenvalue is negative with a large absolute value, making the decision function more sensitive to that feature, which is related to the transverse direction of the laser line. In the proposed model the decision function is weighted for higher values to the real centers synthetically, considering the properties in the longitudinal and transverse directions of the laser line. Moreover, this method provides a decision value from 0 to 1 for arbitrary candidate centers, which yields a normalized measure for different laser lines in different images. The normalized results of pixels close to 1 are determined to be the real centers by progressive scanning of the image columns. Finally, the zero point of a second-order Taylor expansion in the eigenvector's direction is employed to refine further the extraction results of the central points at the subpixel level. The experimental results show that the method based on this normalization model accurately extracts the coordinates of laser line centers and obtains a higher recognition rate in two group experiments.