• Title/Summary/Keyword: Integer Problem

Search Result 754, Processing Time 0.034 seconds

Accuracy Enhancement using Network Based GPS Carrier Phase Differential Positioning (네트워크 기반의 GPS 반송파 상대측위 정확도 향상)

  • Lee, Yong-Wook;Bae, Kyoung-Ho
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.111-121
    • /
    • 2007
  • The GPS positioning offer 3D position using code and carrier phase measurements, but the user can obtain the precise accuracy positioning using carrier phase in Real Time Kinematic(RTK). The main problem, which RTK have to overcome, is the necessary to have a reference station(RS) when using RTK should be generally no more than 10km on average, which is significantly different from DGPS, where distances to RS can exceed several hundred kilometers. The accuracy of today's RTK is limited by the distance dependent errors from orbit, ionosphere and troposphere as well as station dependent influences like multipath and antenna phase center variations. For these reasons, the author proposes Network based GPS Carrier Phase Differential Positioning using Multiple RS which is detached from user receiver about 30km. An important part of the proposed system is algorithm and software development, named DAUNet. The main process is corrections computation, corrections interpolation and searching for the integer ambiguity. Corrections computation of satellite by satellite and epoch by epoch at each reference station are calculated by a Functional model and Stochastic model based on a linear combination algorithm and corrections interpolation at user receiver are used by area correction parameters. As results, the users can obtain the cm-level positioning.

  • PDF

Optimal Location Problem for Constrained Number of Emergency Medical Service (한정된 응급시설의 최적위치 문제)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.141-148
    • /
    • 2013
  • This paper proposes an EMS algorithm designed to determine the optimal locations for Emergency Medical Service centers that both satisfy the maximum ambulance response time T in case of emergency and cover the largest possible number of residents given a limited number of emergency medical services p in a city divided into different zones. This methodology generally applies integer programming whereby cases are categorized into 1 if the distance between two zones is within the response time and 0 if not and subsequently employs linear programming to obtain the optimal solution. In this paper, where p=1, the algorithm determines a node with maximum coverage. In cases where $p{\geq}2$, the algorithm selects top 5 nodes with maximum coverage. Based on inclusion-exclusion method, this selection entails repeatedly selecting a node with the maximum coverage when nodes with lower numbers are deleted. Among these 5 selected nodes, the algorithm selects a single node set with the greatest coverage and thereby as the optimal EMS location. The proposed algorithm has proven to accurately and expeditiously obtain the optimal solutions for 12-node network, 21-node network, and Swain's 55-node network.

Efficient Processing of k-Farthest Neighbor Queries for Road Networks

  • Kim, Taelee;Cho, Hyung-Ju;Hong, Hee Ju;Nam, Hyogeun;Cho, Hyejun;Do, Gyung Yoon;Jeon, Pilkyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.79-89
    • /
    • 2019
  • While most research focuses on the k-nearest neighbors (kNN) queries in the database community, an important type of proximity queries called k-farthest neighbors (kFN) queries has not received much attention. This paper addresses the problem of finding the k-farthest neighbors in road networks. Given a positive integer k, a query object q, and a set of data points P, a kFN query returns k data objects farthest from the query object q. Little attention has been paid to processing kFN queries in road networks. The challenge of processing kFN queries in road networks is reducing the number of network distance computations, which is the most prominent difference between a road network and a Euclidean space. In this study, we propose an efficient algorithm called FANS for k-FArthest Neighbor Search in road networks. We present a shared computation strategy to avoid redundant computation of the distances between a query object and data objects. We also present effective pruning techniques based on the maximum distance from a query object to data segments. Finally, we demonstrate the efficiency and scalability of our proposed solution with extensive experiments using real-world roadmaps.

The Method for Real-time Complex Event Detection of Unstructured Big data (비정형 빅데이터의 실시간 복합 이벤트 탐지를 위한 기법)

  • Lee, Jun Heui;Baek, Sung Ha;Lee, Soon Jo;Bae, Hae Young
    • Spatial Information Research
    • /
    • v.20 no.5
    • /
    • pp.99-109
    • /
    • 2012
  • Recently, due to the growth of social media and spread of smart-phone, the amount of data has considerably increased by full use of SNS (Social Network Service). According to it, the Big Data concept is come up and many researchers are seeking solutions to make the best use of big data. To maximize the creative value of the big data held by many companies, it is required to combine them with existing data. The physical and theoretical storage structures of data sources are so different that a system which can integrate and manage them is needed. In order to process big data, MapReduce is developed as a system which has advantages over processing data fast by distributed processing. However, it is difficult to construct and store a system for all key words. Due to the process of storage and search, it is to some extent difficult to do real-time processing. And it makes extra expenses to process complex event without structure of processing different data. In order to solve this problem, the existing Complex Event Processing System is supposed to be used. When it comes to complex event processing system, it gets data from different sources and combines them with each other to make it possible to do complex event processing that is useful for real-time processing specially in stream data. Nevertheless, unstructured data based on text of SNS and internet articles is managed as text type and there is a need to compare strings every time the query processing should be done. And it results in poor performance. Therefore, we try to make it possible to manage unstructured data and do query process fast in complex event processing system. And we extend the data complex function for giving theoretical schema of string. It is completed by changing the string key word into integer type with filtering which uses keyword set. In addition, by using the Complex Event Processing System and processing stream data at real-time of in-memory, we try to reduce the time of reading the query processing after it is stored in the disk.