• 제목/요약/키워드: Intake manifold

검색결과 144건 처리시간 0.023초

슬라이딩 모드 관측기에 의한 최적의 공회전 제어기 설계 (Design of Optimal Idle Speed Controller by Sliding Mode Observer)

  • 이영춘;이성철
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.161-167
    • /
    • 2001
  • This paper presents an approach to nonlinear engine idle controller and intake manifold absolute pressure(MAP) observer based on mean torque production model. A stable engine idle speed is important in that the unstable engine Idle mode can make engine to drooping or stall state. A sliding fuzzy controller has been designed to control engine idle speed under load disturbance. A sliding observer is also developed to estimate the intake manifold absolute pressure and compared with the actual MAP sensor value. The sliding mode observer has shown good robustness and good tracking performance. The inputs of sliding fuzzy controller are the errors of rpm and MAP. The output is a duty cycle(DC) for driving a idle speed control valve(ISCV).

  • PDF

4기통 전기점화기관의 혼합기 불균일화가 기관성능에 미치는 영향 (Effect of Non-Uniform Mixture on the 4 Cylinder S.I.Engine Performance)

  • 김물시;진성호;박경석;이용길
    • 한국자동차공학회논문집
    • /
    • 제2권4호
    • /
    • pp.72-79
    • /
    • 1994
  • In an automotive spark ignition, it is important to form the proper mixture(air/fuel) on each driving condition for developing the stabilizing combustion and exhaust characteristics. Since most of supply fuel is attached on the inside wall of the intake manifold for unadequate atomization by fuel injection system, it brings a bad effect on combustion and exhaust caused by nonuniformity of fuel distribution to each cylinder and mixture variation. Also it affects engine performance variation and causes noises and vibration. In this study, we verified the effect of the mixture variation which is caused by fuel liquid film in an intake manifold on combustion characteristics and engine performance.

  • PDF

가솔린 기관의 혼합기 형성 촉진이 연소 특성에 미치는 영향 (Effect of Enhanced Mixture Formation on the Combustion Characteristics in Gasoline Engine)

  • 이창식;서영호;김민수
    • 한국자동차공학회논문집
    • /
    • 제3권5호
    • /
    • pp.56-63
    • /
    • 1995
  • In this paper, the fuel atomization effect of a spark-ignition engine on the lean burn characteristics is studied. The fuel atomization is enhanced by heating the inside of the intake manifold with electric heater. Several operating parameters including cyclic variation are expressed against the air-fuel ratio from the experimental results. The fuel atomization gives much influence on the combustion stability. As the intake manifold is heated, the combustion duration decreased and the value of COV in the lean region as well as in the theoretical equivalence ratio became smaller than of not-heated.

  • PDF

다기관 4사이클 스파크 점화기관의 가스 교환과정에 관한 예측 (Prediction on gas exchange process of a multi-cylinder 4-stroke cycle spark ignition engine)

  • 이병해;이재철;송준호
    • 오토저널
    • /
    • 제13권2호
    • /
    • pp.67-87
    • /
    • 1991
  • The computer program which predicts the gas exchange process of multi-cylinder 4-Stroke cycle spark-ignition engine, can be great assistance for the design and development of new engine. In this study, the computer program was developed to predict the gas exchange process of multi-cylinder four stroke cycle spark ignition engine including intake and exhaust systems. When gas exchange process is to be calculated, the evaluation of the variation of the thermo-dynamic properties with time and position in the intake and exhaust systems is required. For the purpose, the application of the generalized method of characteristics to the gas exchange process is known as one of the method. The simulation model developed was investigated to the analysis of the branch system of multi-cylinder. The models used were the 2-zone expansion model and single zone model for in cylinder calculation and the generalized method of characteristic including area change, friction, heat transfer and entropy gradients for pipe flow calculation. The empirical constants reduced to least number as possible were determined through the comparison with the experimented indicator diagram of one particular operation condition and these constants were applied to other operating condition. The predicted pressures in cylinder were compared with the experimental results over the wide range of equivalence ratio and ignition timing. The predicted values have shown good agreement with the experimental results. The thermodynamic properties in the intake and exhaust system were predicted over the wide range of equivalence ratio and ignition timing. The obtained results can be summarized as follows. 1. Pressures in the exhaust manifold have a little influence on the equivalence ratio, a great influence on the ignition timing. 2. Pressures in the inlet manifold are nearly unchanged by the equivalence ratio and the ignition timing. 3. In this study, the behaviors of the exhaust temperature, gas in the exhaust manifold were ascertained.

  • PDF

BOOST를 이용한 가솔린 기관 흡·배기 계통의 시뮬레이션에 관한 연구 (Study on the Simulation of the Intake and Exhaust Systems of a Gasoline Engine Using BOOST)

  • 이대권;윤건식;류순필;우석근;성활경
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.23-32
    • /
    • 2013
  • This paper presents the simulation of the multi-cylinder 4-stroke cycle spark-ignition engine using a commercial simulation tool, AVL BOOST. Various models were examined to select the appropriate models that would best serve to analyze the main components of the intake and exhaust systems-the plenum chamber, the muffler and the exhaust manifold branch junction. For the plenum chamber and the muffler, the tank model and the pipe model were tested. In order to analyze the exhaust manifold branch junction, a complicated model which reflects the actual shape and involves pressure drops was compared to a simplified one. The results show that both the tank model and the pipe model are applicable with satisfying accuracies for the plenum chamber and the muffler. However, the tank model is more desirable in regards to convenience in modeling and efficiency in calculation. Though both the complicated model and the simplified model show satisfying accuracies for the exhaust manifold branch junction, the simplified model is recommended in regards to convenience in modeling and efficiency in calculation.

흡기 매니폴드 가스켓 블레이드 적용에 따른 배출가스 고찰 (Investigation of Emission Gas by using the Intake Manifold Gasket Blade)

  • 이민정;김태중;신윤찬;조홍현
    • 한국산학기술학회논문지
    • /
    • 제19권12호
    • /
    • pp.54-61
    • /
    • 2018
  • 자동차의 엔진에서 불완전 연소는 유해 배기가스 생성의 주요 원인이다. 따라서 본 연구에서는 자동차 엔진에서 불완전 연소를 방지하고 배출되는 배기가스의 양을 줄이기 위하여 흡기 매니폴드에 가스켓 블레이드를 적용하여 유입되는 공기의 유속 증가에 따른 배기가스의 변화를 해석과 실험을 통하여 고찰하였다. 먼저 3D 유동 해석 프로그램을 사용하여 가스켓 블레이드의 개수와 각도에 따른 유동 해석을 수행하였으며, 해석 결과 가스켓 블레이드를 적용한 흡기 매니폴드 출구에서 공기의 평균 유속은 블레이드 개수가 6개와 $30^{\circ}$각도에서 가장 좋게 나타났다. 해석 결과를 기반으로 무부하 엔진 시뮬레이션 시스템에서 가스켓 블레이드가 배기가스에 미치는 영향을 확인하기 위하여 실험을 진행하였으며 엔진 회전수가 2000 rpm에서 4000 rpm으로 증가함에 따라 배기가스인 HC, CO, NOx는 평균적으로 각각 23.4%, 16.5%, 3.8% 감소하였으며 배기가스의 배출량 감소 효과는 점점 줄어드는 것으로 나타났다.

고도에 따른 제동 성능 예측을 위한 엔진 흡기압 모델링 (Modeling of Engine Intake Pressure for Predicting Braking Performance Affected by Altitude)

  • 안광만;이지석;박진일;이종화
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.228-233
    • /
    • 2014
  • Reduction of the atmospheric pressure in high altitude affects brake booster system which was operated by the difference between the intake pressure and the atmospheric pressure. So, braking system can not stably perform due to decrease of brake boost pressure. In this study, effects of altitude change on engine intake pressure was analyzed by prediction model of engine intake pressure which was studied previously. And engine intake pressure was simulated by simulation model in various driving conditions and environmental conditions.

운행자동차 성능 및 배기 배출물에 미치는 흡기 다기관, 흡기 파이프 및 공기필터의 튜닝효과에 관한 연구 (A Study on Tuning Effects of Intake Manifold, Intake Pipe and Air Filter upon Performance and Exhaust Emissions of Driving Car)

  • 배명환;구영진;박희성
    • 한국자동차공학회논문집
    • /
    • 제24권5호
    • /
    • pp.538-548
    • /
    • 2016
  • The purpose of this study is to identify the possibility of effective tuning works, understand the characteristics of tuning engine, and analyse the basic data of engine tuning inspection corresponding to the safe operation and environment of a driving gasoline car. The effects of tuning on the characteristics of performance and exhaust emissions under a wide range of engine speeds are experimentally investigated by the actual driving car with a four-cycle, four-cylinder DOHC, turbo-intercooler, water-cooled gasoline engine operating at four types of non-tuning, tuning 1, 2 and 3. The tuning parts in the gasoline engine are the intake manifold, intake pipe and air filter. In the experiment, the output, torque and air-fuel ratio of the five-speed automatic transmission vehicles were measured at the chassis dynamometer(Dynojet 224xLC) with one person on board. The exhaust emissions of $NO_X$, THC, CO, $O_2$ and $CO_2$, and excess air ratio(${\lambda}$) at the other chassis dynamometer(DASAN-MD-ASM-97-KR-HD) were also measured by the idle/constant-speed mode(ASM2525 mode) test method. It is found that the actual air-fuel ratios of non-tuning and tuning engines were shown to be lower than the stoichiometric air-fuel ratio with increasing engine speed, and the actual air-fuel ratio of non-tuning engine was slightly higher than those of tuning engines when the engine speed is more than 4000 rpm. The output was significantly increased by the tuning whereby the maximum output of tuning engine was more increased to approximately 117.64% than that of non-tuning engine. In addition, CO, THC and $NO_X$ emissions of non-tuning and tuning engines measured by the constant-speed test mode were all satisfied with the inspection standards. CO emission was increased, while THC and $NO_X$ emissions were reduced by tuning.

레인지 익스텐더 전기자동차 엔진용 저가형 2단속도 고정밀 운전제어시스템 개발 (Development of Low-Cost, Double-Speed, High-Precision Operation Control System for Range Extender Engine)

  • 함윤영;이정준
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.529-535
    • /
    • 2018
  • 레인지 익스텐더 전기자동차는 소형의 발전용 엔진이 가장 효율이 좋은 특정 운전영역에서 기동하여 배터리를 충전시키며 주행거리를 연장하는 메커니즘으로 주행한다. 본 연구에서는 저가이면서 제어 로직이 간단한 시스템을 개발하기 위하여 기존 쓰로틀바디시스템을 대체하는 스텝모터방식 흡입공기량 공급시스템을 개발하여 기존 base 엔진에 적용하고, 흡입공기량 증대를 통한 성능 개선을 위해 흡 배기다기관의 길이 변경 효과를 실험적으로 살펴보았다. 실험결과, 하나의 스텝모터로 작동하는 Type B의 흡입공기량조절장치가 Type A보다 전 운전영역에서 성능이 높았으나 유동저항의 증가로 base 엔진보다는 성능이 낮았다. 이를 개선하기 위해 흡기매니폴드에 140mm 어댑터를 장착한 경우와 새로 설계된 70mm 길이의 배기 매니폴드를 적용한 경우 2200rpm과 4300rpm 두 속도조건에서 엔진성능이 향상됨을 확인할 수 있었다. 최적 설계된 엔진을 대상으로 레인지 익스텐더 전기자동차에 적용 가능하도록 발전기 부하를 연결하여 2단 속도로 고정밀 운전제어를 구현하였으며 그 결과, 1단 2200rpm과 2단 4300rpm 운전조건에서 ${\pm}2.5%$ 이내의 속도변화율을 나타내었고, 1단 속도에서 2단 속도로 상승 시 610rpm/s의 목표속도 추종성 결과를 얻었다.

전투차량 흡기시스템의 압력손실에 관한 수치적 연구 (A Computational Study on the Pressure Loss of Intake System for the Combat Vehicle)

  • 문성목;안수홍;이경훈;우관제
    • 한국유체기계학회 논문집
    • /
    • 제15권3호
    • /
    • pp.25-31
    • /
    • 2012
  • A computational study on the improvement of the pressure loss of intake system, which is located at engine manifold of the combat vehicle, has been conducted using a finite-volume-based, Reynolds-Averaged Navier-Stokes (RANS) solver. The computational result of the pressure loss through the air cleaner is in good agreement with equivalent experimental data. A parametric study was done for improving of the pressure loss of intake system over the baseline case. The effects of five primary parameters such as the height of inlet, the width of interconnection pipe, the shape of drain chamber and the diameter of filter housing were considered in this study. Consequently, this computational investigation can contribute to finding an optimal guideline for the idea of improvement in the pressure loss of intake system.