• Title/Summary/Keyword: Intake Air Temperature

Search Result 143, Processing Time 0.028 seconds

Effects of Different Ventilation Systems on Rearing Growing-finisher and Indoor Environment in a High Rise Hog Building (고상식 돈사내에서 환기시스템별 환경조사 및 육성비육돈 사육 효과)

  • Yoo, Y.H.;Jeong, J.W.;Park, K.H.;Song, J.I.;Ko, Y.G.;Kim, S.W.;Lee, I.B.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.3
    • /
    • pp.193-204
    • /
    • 2010
  • The goal of this study was to develop a high-rise hog building(HRHB) for growing-fattening stages. HRHB was two story building and was suitable for specific environment in Korea. Manure was treated in a first floor and pigs were raised on the slatted second floor. Three ventilation systems - 1) duct inlet to wall exhaust system(V1), 2) eave inlet to wall exhaust system(V2), and 3) ceiling inlet to wall exhaust system(V3) - were used. This experiment was conducted during winter and from summer to fall. Air temperature, air speed, ammonia, hydrogen sulfide in HRHB, and swine growth rate were measured. During winter, air temperature in V1 system tended to be slightly high without any effect of outside air temperature. Maximum temperature from summer to fall was between 33.4 and $33.8^{\circ}C$ and there was no significant difference among systems. Continuously measured daily temperature was lower in V2 system than other systems and the fluctuation of air temperature was high. Air speed in V1 and V2 systems were similar (0.02~0.21 m/s), and was 0.04~0.15 m/s in V3 during winter. From summer to fall, air speed in V1, V2, and V3 systems were 0.10~0.41 m/s, 0.10~0.83 m/s, and 0.11~0.26 m/s, respectively. V2 system showed bigger fluctuation of air speed than other systems. During winter, the highest concentrations of ammonia in V1, V2, and V3 systems were 7.0, 3.5, and 8.7 ppm, respectively. Hydrogen sulfide was not detected. The highest concentrations of ammonia from summer to winter in V1, V2, and V3 systems were 6.1, 2.8, and 5.6 ppm, respectively. Swine growth showed no statistical significance among systems. However, daily weight gain was approximately 4% higher in V1 and V3 than in V2. Feed intake/daily weight gain was approximately 4% higher in V1 than other systems. From summer to fall, daily weight gain in V1 and V3 tended to approximately 3% higher than other systems, and feed intake/daily weight gain was approximately 2% higher in V1 than other systems. Hence, V2 system for the ventilation system of HRHB should not be utilized.

A Study on the Treatment of Radioactive Liquid Wastes using Synthetic textile by Air Intake System (공기유입시스템에서의 섬유매체에 의한 방사성액체폐기물 처리에 관한 연구)

  • 김태국;이영희;안섬진;손종식;홍권표
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.101-104
    • /
    • 2003
  • In this study based on the mass transfer theory, experiments for the evaporation rates depending on various conditions were carried out through the operation of the existing Natural Evaporation Facility in KAERI. Evaporation media were made of the cotton and polyester. Air circulation in the facility was forced by exhausting fans. The evaporation rate and the decontamination factor were calculated by the result of experiment. The evaporation rate increased as the flow rate of air supply, the feed rate of liquid waste, and the temperature of supplied air increased. As for the humidity of supplied air, the evaporation rate was getting higher as the humidity was getting lower. As the result of this study, operation conditions of the Natural Evaporation Facility are optimized as follows : The air temperature above $8^{\circ}C$, the air humidity below 70%, the air flow rate 1.14-1.47 m/sec, and the liquid waste feed rate $4.6{\ell}/hr\cdotm^2$. The decontamination factor and the radioactivity are $5.1{\times}10^3$and $4.7{\times}10^{-13}{\mu}Ci/\textrm{m}{\ell}$ respectively, at the above mentioned optimum operation conditions. The air factor in the Dalton's equation for evaporation was determined from results of experiment on the temperature, the humidity, and the flow rate of supplied air as following : $[\textit{Eh}=(0.018 + 0.0141\textitv) {\delta}textitH]$

  • PDF

A Study on the Combustion Characteristics of Ultra High Pressure Fuel Injection System in a Diesel Engine(I) (초고압 연료분사장치 디젤기관의 연소특성에 관한 연구(I))

  • Choi, D.S.;Rhee, Kyung-Tai
    • Journal of ILASS-Korea
    • /
    • v.4 no.1
    • /
    • pp.34-44
    • /
    • 1999
  • The purposes of this study were to evaluate engine performance and to analyze smoke emission characteristics for varied injection pressures and engine operating conditions of an electronically-controlled ultra high pressure fuel injection system(UHPFIS). It was discovered that the engine performance with the present UHPFIS was far better than what was initially expected. And the UHPFIS permitted engine operation at air/fuel ratios richer than 20 : 1 without increasing smoke emissions. It was discovered that the indicated mean effective pressure was increased, while the specific fuel consumption and the amount of soot were decreased, as the fuel rail pressures were improved atomization of the fuel spray. As the intake air temperature was increased from $38\sim205^{\circ}C$ in 38 degree increments, the indicated mean effective pressure was dropped while the specific fuel consumption was increased.

  • PDF

INFLUENCE OF INITIAL COMBUSTION IN SI ENGINE ON FOLLOWING COMBUSTION STAGE AND CYCLE-BY-CYCLE VARIATIONS IN COMBUSTION PROCESS

  • Lee, Kyung-Hwan;Kim, Kisung
    • International Journal of Automotive Technology
    • /
    • v.2 no.1
    • /
    • pp.25-31
    • /
    • 2001
  • It is necessary to understand the combustion process and cycle-by-cycle variation in combustion to improve the engine stability and consequently to improve the fuel economy and exhaust emissions. The pressure related parameters instead of mass fraction burned were compared for the effect of initial combustion pressures on the following combustion and the analysis of cycle-by-cycle variation in combustion for two pen injected SI engines. The correlation between IMEP and pressures at referenced crank angles showed almost the same trends for equivalence ratios, but the different mixture preparations indicated different tendency. The dependency of IMEP on pressure at the referenced crank angles increases as the mixture becomes leaner for both engines. The mixture distribution in the combustion chamber was varied with the coolant temperature and intake valve deactivation due to the evaporation of fuel and air motion. The correlation between pressure related parameters were also compared for the coolant temperatures and air motion.

  • PDF

Establishment of Multi-Stage Turbocharger Layout for HALE UAV Engine and Its Performance Assessment (고고도 장기체공 무인기 엔진용 다단 터보차저 구성 및 성능해석)

  • Kang, Young Seok;Lim, Byung Jun;Kim, Jong Kuk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.31-36
    • /
    • 2015
  • A multi-stage turbocharger system has been constructed for HALE UAV internal combustion engine. To boost rarefied intake air up to sea level condition, the turbocharger system should consist of 3 stages including heat exchanger located after compressor outlet to drop compressed air temperature. One dimensional system analysis has been conducted by matching required power between compressor and turbine and adequate turbochargers have been searched for from commercially available models targeting for automobiles. By applying commercial automobile turbochargers to the multi-stage turbocharger system, it is expected that considerable amount of research resources will be saved.

A Study on Engine Performance Characteristics of a Homogeneous Charge Compression Ignition(HCCI) Engine According to Exhaust Gas Recirculation(EGR) (EGR(배기재순환)에 따른 HCCI (균질혼합압축착화)기관의 엔진성능특성에 관한 연구)

  • Choi, Gyeung-Ho;Han, Sung-Bin;Dibble, Robert W.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.857-862
    • /
    • 2004
  • HCCI engines take advantage of high compression ratio and heat release rate, they exhibit high efficiency in compression ignition engines. HCCI engines also utilize a lean air/fuel ratio resulting in low emissions of NOx and particulate matter(PM). The objective of this research is to determine the effects of EGR rate on the combustion processes of HCCI. For this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine, and a heating device was installed to raise the temperature of the intake air and also to make it more consistent. In addition, a pressure sensor was inserted into each of the cylinders to investigate the differences in characteristics among the cylinders.

Evaluation of Indoor Environment Characteristics through Field Measurement in Large-sized Discount Stores (현장측정을 통한 대형 할인매장의 실내환경 평가)

  • Park Byung-Yoon;Jung Yong-Ho;Ham Heung Don;Sohn Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.863-872
    • /
    • 2005
  • It is important to control indoor environment for influence on health and comfort of occupants in large-sized discount stores. On the other hand large-sized discount stores have a large number of visitors, vestibules, open spaces, high energy consumption and increasing of outside air intake. This study aims to offer the design data of building services system that can save energy and control environment through field measurement selecting two large-sized discount stores. Indoor environment factors such as temperature, relative humidity, air velocity and concentrations of $CO_2$, CO gas and TSP were measured and evaluated. In each case of $CO_2$, and CO gas, its maximum values were 2,800 ppm and 20 ppm. So proper strategy for the indoor air quality is indispensable in this type of building. Dry bulb temperature varies from $18^{\circ}C$ to $28^{\circ}C$ according to a measuring point and time. From this results, it is inferred these buildings had excessive equipment capacity. In terms of economical and environmental points, these data will be utilized to the design of HVAC system of retail facilities.

A Study for Predictions of In-Cylinder Residual Gas Fraction in SI Engines (SI 엔진 내부의 잔류가스 추정 기법에 관한 연구)

  • Kim, Sung-Cheol;Lee, Sang-Jin;Kim, Duk-Sang;Ohm, In-Yong;Cho, Yong-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.903-908
    • /
    • 2001
  • Residual gas acts as a diluent which results in reducing the in-cylinder temperature as well as the flame speed, significantly affecting fuel economy, NOx emissions and combustion stability. Therefore it is important to determine the residual gas fraction as a function of the engine operating parameters accurately. However, the determination of the residual gas fraction is very sophisticated due to the unsteady state of induction and exhaust process. There has been little work toward the development of a generally applicable model for quantitative predictions of residual gas fraction. In this paper, a simple model for calculating the residual gas fraction in SI engines was formulated. The effects of engine operating parameters on the residual gas were also investigated. The amount of fresh air was evaluated through AFR and fuel consumption. After this, from the intake temperature and pressure, the amount of total cylinder-charging gas was estimated. The residual fraction was derived by comparing the total charging and fresh air. This results coincide with measured value very well.

  • PDF

Status Analysis for the Confinement Monitoring Technology of PWR Spent Nuclear Fuel Dry Storage System (경수로 사용후핵연료 건식저장시스템의 격납감시 기술현황 분석)

  • Baeg, Chang-Yeal;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.35-44
    • /
    • 2016
  • Leading national R&D project to design a PWR spent nuclear fuel interim dry storage system that has been under development since mid-2009, which consists of a dual purpose metal cask and concrete storage cask. To ensure the safe operation of dry storage systems in foreign countries, major confinement monitoring techniques currently consist of pressure and temperature measurement. In the case of a dual purpose metal cask, a pressure sensor is installed in the interspace of bolted double lid(primary and secondary lid) in order to measure pressure. A concrete storage cask is a canister based system made of double/redundant welded lid to ensure confinement integrity. For this reason, confinement monitoring method is real time temperature measurement by thermocouple placed in the air flow(air intake and exit) of the concrete structure(over pack and module). The use of various monitoring technologies and operating experiences for the interim dry storage system over the last decades in foreign countries were analyzed. On the basis of the analysis above, development of the confinement monitoring technology that can be used optimally in our system will be available in the near future.

Icing Characteristics in Liquid-Phase Injection of LPG Fuel (액상분사식 LPG 인젝터의 아이싱 생성 특성 및 억제 방법)

  • Lee, Sun-Youp;Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.147-152
    • /
    • 2009
  • Since a liquid-phase LPG injection system allows accurate control of fuel injection and increase in volumetric efficiency, it has advantages in achieving higher engine power and lower emissions compared to the mixer type LPG supplying system. However, this system also leads to an unexpected event called icing phenomenon which occurs when moisture in the air near the injector freezes and becomes frost around the nozzle hole due to extraction of heat from surrounding caused by instant fuel vaporization. As a result, it becomes difficult to control air/fuel ratio in engine operation, inducing exacerbation of engine performance and HC emission. One effort to mitigate icing phenomenon is to attach anti-icing injection tip in the end of nozzle. Therefore, in this study, the effect of engine operation parameters as well as surrounding conditions on icing phenomenon was investigated in a bench test rig with commercially-used anti-icing injection tips. The test results show that considerable ice was deposited on the surface near the nozzle hole of the anti-icing tip in low rpm and low load operating conditions in ambient air condition. This is because acceleration of detachment of deposited ice from the tip surface was induced in high load, high rpm conditions, resulting in decrease in frost accumulation. The results of the bench testing also demonstrate that little or no ice was formed at surrounding temperature below a freezing point since the absolute amount of moisture contained in the intake air is too small in such a low temperature.

  • PDF