• Title/Summary/Keyword: Intake Air Pressure

Search Result 198, Processing Time 0.028 seconds

Improvement of Thermal Efficiency and Emission by Lean Combustion in a Boosted Spark-Ignition Engine Fueled with Syngas (합성가스 스파크점화 과급 엔진에서 희박 연소를 통한 열효율 및 배기 개선)

  • Park, Hyunwook;Lee, Junsun;Jamsran, Narankhuu;Oh, Seungmook;Kim, Changup;Lee, Yonggyu;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Lean combustion was applied to improve the thermal efficiency and emission in a single-cylinder, spark-ignition engine fueled with syngas. Under naturally aspirated conditions, the lean combustion significantly improved the thermal efficiency compared to the stoichiometric combustion, mainly due to the reduction in heat transfer loss. Intake air boost was applied to compensate the low power output of the lean combustion. The gross indicated power of 24.8 kW was achieved by increasing the intake pressure up to 1.6 bar at excess air ratio of 2.2. The nitrogen oxides showed near zero level, but the carbon monoxide emission was significant.

A Study on Combustion Characteristics of Spark-Ignited Engine with Different Late Intake Valve Closing for Miller Cycle (밀러사이클 적용 스파크점화기관의 후기 흡기밸브 닫힘각 변화에 따른 연소성능 연구)

  • Chung, J.H.;Kang, S.J.;Kim, J.S.;Jeong, S.C.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.141-148
    • /
    • 2015
  • In order to research engine characteristics of spark-ignited engine with intake valve closing timing change for Miller cycle, two cam for LIVC(Late Intake Valve Closing) were designed and fabricated an prototype valvetrain. And intake valve closing timing were adjusted to build low compressing and high expansion cycle for HEV. In experimental study, it were investigated with different engine speed, spark timing and air-fuel ratio to compare base cam and LIVC cam type. It was found that the volumetry efficiency and effective work of compression process were decreased in case of LIVC cam. When compared with the existing results, the maximum pressure in the cylinder was reduced about 12~13 bar and the volumetric efficiency was reduced about 16%.

A Study on Effect of the Intake Valve Timing and Injection Conditions on the PCCI Engine Performance (흡기밸브 닫힘 시기와 분사조건이 PCCI 엔진의 성능에 미치는 영향에 관한 연구)

  • Lee, Jae-Hyeon;Kim, Hyung-Min;Kim, Yung-Jin;Lee, Ki-Hyung
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • As world attention has focused on global warming and air pollution, high efficiency diesel engines with low $CO_2$ emissions have become more attractive. Premixed diesel engines in particular have the potential to achieve the more homogeneous mixture in the cylinder which results in lower NOx and soot emission. Early studies have shown that the operation conditions such as the EGR, intake conditions, injection conditions and compression ratio are important to reduce emissions in a PCCI (Premixed Charge Compression Ignition) engine. In this study a modified cam was employed to reduce the effective compression ratio. While opening timing of the intake valve was fixed, closing timing of the intake valve was retarded $30^{\circ}$. Although Atkinson cycle with the retarded cam leads to a low in-cylinder pressure in the compression stroke, the engine work can still be increased by advanced injection timing. On that account, we investigated the effects of various injection parameters to reduce emission and fuel consumption; as a result, lower NOx emission levels and almost same levels of fuel consumption and PM compared with those of conventional diesel engine cam timing could be achieved with the LIVC system.

Status Analysis for the Confinement Monitoring Technology of PWR Spent Nuclear Fuel Dry Storage System (경수로 사용후핵연료 건식저장시스템의 격납감시 기술현황 분석)

  • Baeg, Chang-Yeal;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.35-44
    • /
    • 2016
  • Leading national R&D project to design a PWR spent nuclear fuel interim dry storage system that has been under development since mid-2009, which consists of a dual purpose metal cask and concrete storage cask. To ensure the safe operation of dry storage systems in foreign countries, major confinement monitoring techniques currently consist of pressure and temperature measurement. In the case of a dual purpose metal cask, a pressure sensor is installed in the interspace of bolted double lid(primary and secondary lid) in order to measure pressure. A concrete storage cask is a canister based system made of double/redundant welded lid to ensure confinement integrity. For this reason, confinement monitoring method is real time temperature measurement by thermocouple placed in the air flow(air intake and exit) of the concrete structure(over pack and module). The use of various monitoring technologies and operating experiences for the interim dry storage system over the last decades in foreign countries were analyzed. On the basis of the analysis above, development of the confinement monitoring technology that can be used optimally in our system will be available in the near future.

Performance Analysis for Various Flight Conditions with Air Disturbance (대기외란을 적용한 램제트 엔진의 비행 조건별 성능 연구)

  • Seo, Bong-Gyun;Choi, Jae-Hyung;Sung, Hong-Gye;Park, Jung-Woo;Park, Ik-Soo;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.588-593
    • /
    • 2011
  • In this study, the performance analysis method for ramjet engine system with atmospheric air disturbance was proposed. Flight path was determined to satisfy dynamic pressure constant at each flight altitude. The atmospheric air disturbance incoming into a engine intake was simulated by the model Tank proposed. The performance parameters was investigated at each flight condition with air disturbance. Engine operation stability was evaluated as analysis of the normal shock position.

  • PDF

A Study on Buzz Margin Control in Supersonic Engine Intake using PID Controller (PID 제어기를 이용한 초음속 엔진 흡입구의 버즈마진 제어에 관한 연구)

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Kang, Myoung-Cheol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.88-92
    • /
    • 2009
  • Total pressure recovery ratio in intake is crucial factor to the operational characteristics of supersonic propulsion system because it does not compress inlet air mechanically by compressor, but does compress inlet air by ram compression. As the result of that the dynamic characteristic analysis of engine was performed before the controller was designed, it could be ascertained when the AoA of flight vehicle increases, the buzz margin decreases so that the shock wave produced outside intake in the specified area according to flight operation's characteristics. Therefore the PID control algorithm was designed to be controlled buzz margin that the characteristic of shock wave could meet the requirement of performance in intake. The PID controller was designed that the buzz margin value is being positive number using the control variables; fuel flow and nozzle throat area.

  • PDF

Evaluation of Methods for Determination of Bulk Density of Eight Kinds of Forage under Air-dry and Wet Conditions

  • Sekine, J.;Kamel, Hossam E.M.;El-Seed, Abdel Nasir M.A. Fadel;Hishinuma, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1126-1130
    • /
    • 2003
  • The conditions of measurement for the determination of bulk density were evaluated to assess the bulkiness of 8 kinds of forage. The bulkiness of the forages was determined with 4 different sizes of forage samples with 7 different pressure application under air-dry and wet conditions. The dry bulk density (DBD) curvilinearly regressed with the pressure applied. The particle size of the samples and kinds of forage used in the present study did not affect changes in values of DBD determined under pressures over $20g/cm^2$ up to $200g/cm^2$. The values of the wet bulk density (WBD) increased as an increment of particle size, but were not always regressed on the particle size of the 8 kinds of forage. The DBD determined on 8 mm particles showed a higher correlation coefficient with neutral detergent fiber (NDF) contents. The DBD may be a useful tool for the assessment of NDF in forage, when it is determined under condition of a pressure of $100g/cm^2$ or over with a particle size of 8 mm. The WBD may not be utilized for the direct measurement of the physical characteristics of forage, but may be required a thorough consideration on water solubility of forages. Further studies are needed to clarify the DBD contribution to the prediction of forage intake by ruminants.

An Analysis of the Physiological and Psychological Responses Elicited When Wearing an Aerogel Cold Protective Jacket in Airflow (에어로젤 방한 재킷 착용시의 기류 유무에 따른 생리·심리학적 특성 분석)

  • Seong-Suk Kim;Su-Young Son;Hee-Eun Kim
    • Human Ecology Research
    • /
    • v.62 no.2
    • /
    • pp.317-326
    • /
    • 2024
  • This study evaluated the thermal physiological and psychological responses elicited when wearing cold protective jackets with aerogel fillings in two cold environments, one without air velocities and one with air velocities (2.3 m·s-1), at an air temperature of 10℃. The participants were five healthy young males. Measures were taken of physiological parameters, blood pressure (BP), heart rate (HR), core temperature, oxygen uptake (Vo2), and microclimate (temperature and humidity). The psychological parameters evaluated were thermal and wetness sensation. No differences were observed in systolic blood pressure, heart rate, and oxygen intake between the conditions. At tympanic temperature, a significant difference was observed between the conditions during exercise (p<.05); . A significant difference was observed in the microclimate temperature of the clothing according to the airflow, and temperature changes in the chest and back revealed different patterns. Significant differences were observed in thermal sensation (whole body (p<.05), chest (p<.05), back (p<.01)) between airflow conditions. The results therefore indicate that cold protective jackets with an aerogel filling are suitable for people operating in low-temperature and airflow environments.

Analysis of Cylinder Swirl Flow and Lean Combustion Characteristics of 3rd Generation LPLI(Liquid Phase LPG Injection) Engine (제3세대 LPLI 엔진 연소실내 스월유동 및 희박연소 특성 해석)

  • Kang, Kern-Yong;Lee, Jin-Wook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.26-33
    • /
    • 2007
  • The intake swirl motion, as one of dominant effects for an engine combustion. is very effective for turbulence enhancement during the compression process in the cylinder of 2-valve engine. Because the combustion flame speed is determined by the turbulence that is mainly generated from the mean flow of the charge air motion in intake port system. This paper describes the experimental results of swirl flow and combustion characteristics by using the oil spot method and back-scattering Laser Doppler velocimeter (LDV) in 2-valve single cylinder transparent LPG engine using the liquid phase LPG injection. For this. various intake port configurations were developed by using the flow box system and swirl ratios for different intake port configurations were determined by impulse swirl meter in a steady flow rig test. And the effects of intake swirl ratio on combustion characteristics in an LPG engine were analyzed with some analysis parameters that is swirl ratio. mean flow coefficient, swirl mean velocity fuel conversion efficiency. combustion duration and cyclic variations of indicated mean effective pressure(IMEP). As these research results, we found that the intake port configuration with swirl ratio of 2.0 that has a reasonable lean combustion stability is very suitable to an $11{\ell}$ heavy-duty LPG engine with liquid phase fuel injection system. It also has a better mean flow coefficient of 0.34 to develope a stable flame kernel and to produce high performance. This research expects to clarify major factor that effects on the design of intake port efficiently with the optimized swirl ratio for the heavy duty LPG engine.

Air Supplying System for DMFC using Piezo Actuators (압전 액추에이터를 이용한 DMFC의 공기 공급 시스템)

  • Hong, Chol-Ho;Kim, Dong-Jin;Yun, Hyo-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1585-1591
    • /
    • 2010
  • DMFC uses oxygen by reactants. Therefore, cathode electrode must contact with outside air. However, when used in mobile devices, the user's body by blocking the air intake on the oxygen supply DMFC con not. DMFC to supply air to the cooling fan is used. However, by using cooling fan, air inlet to the pressure loss and changes will occurs, the output will be worse. In this paper, we designed air supplying system using piezo actuators. We DMFC evaluation system was implemented, verified the performance of air supplying system. And the operation was connected to an MP3 player.