• 제목/요약/키워드: Insulin signal transduction

검색결과 21건 처리시간 0.021초

Evidence for the Ras-Independent Signaling Pathway Regulating Insulin-Induced DNA Synthesis

  • Jhun, Byung-H.
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.196-202
    • /
    • 1999
  • The existence of the Ras-independent signal transduction pathway of insulin leading to DNA synthesis was investigated in Rat-1 fibroblasts overexpressing human insulin receptor (HIRc-B) using the single-cell microinjection technique. Microinjection of a dominant-negative mutant $Ras^{N17}$ protein into quiescent HIRc-B cells inhibited the DNA synthesis stimulated by insulin. Microinjection of oncogenic H-$Ras^{V12}$ protein ($H-Ras^{V12}$) (0.1 mg/ml) induced DNA synthesis by 35%, whereas that of control-injected IgG was induced by 20%. When the marginal amount of oncogenic H-$Ras^{V12}$ protein was coinjected with a dominant-negative mutant of the H-Ras protein ($Ras^{N17}$), DNA synthesis was 35% and 74% in the absence and presence of insulin, respectively. This full recovery of DNA synthesis by insulin suggests the existence of the Ras-independent pathway. The same recovery was observed in the cells coinjected with either H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus SH2 domain of the p85 subunit of PI3-kinase ($p85^{SH2-N}$) or H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus interfering anti-Shc antibody. When co-injected with a dominant-negative H-$Ras^{N17}$, the DNA synthesis induced by the Ras-independent pathway was blocked. These results indicate that the Ras-independent pathway of insulin leading to DNA synthesis exists, bypassing the p85 of PI3-kinase and Shc protein, and requires Rac1 protein.

  • PDF

Molecular Docking Study of Anti-diabetic Xanthones from Garcinia Xanthochymus

  • Babu, Sathya
    • 통합자연과학논문집
    • /
    • 제10권3호
    • /
    • pp.137-140
    • /
    • 2017
  • Diabetes mellitus has become a major growing public health problem worldwide. More than 90% of all diabetes cases are classified as type 2 diabetes (T2D), which is also known as non-insulin dependent diabetes. Protein tyrosine phosphatase 1B (PTP1B) plays an important role in the negative regulation of insulin signal transduction pathway and has emerged as novel therapeutic strategy for the treatment of type 2 diabetes. PTP1B inhibitors enhance the sensibility of insulin receptor (IR) and have favorable curing effect for insulin resistance-related diseases. Recently twelve anti-diabetic xanthones were isolated from the bark of Garcinia xanthochymus. Hence, in the present study, molecular docking was carried out for these twelve xanthones. The objective of this work is to study the interaction of the newly isolated xanthones with PTP1B. The docking results showed that xanthones have good interactions and has better docking score with PTP1B and suggest LYS120 and ASP181 are the important residues involved in interaction between PTP1B enzyme and the xanthones.

AMPK와 자식작용의 미토콘드리아 생합성 조절 기전 (Control Mechanism of AMPK and Autophagy for Mitochondrial Biogenesis)

  • 전병환
    • 한국콘텐츠학회논문지
    • /
    • 제9권4호
    • /
    • pp.355-363
    • /
    • 2009
  • 비정상적인 미토콘드리아에 의해 산화 스트레스가 증가하면 세포내 신호전달 및 유전자 발현에 손상을 일으켜 인슐린 저항성이나 당뇨병 등의 여러 질환들을 유발한다. 그런데 자식작용은 산화 스트레스로 기능이 저하된 미토콘드리아를 제거하여 인슐린 저항성 등을 억제해준다. 한편 운동도 미토콘드리아 생합성을 강화시켜 조직의 기능저하나 퇴행을 회복시켜준다. 따라서 운동과 자식작용이 서로 연관되어 미토콘드리아 생합성을 유도하는 신호체계로 작용할 가능성이 있고, 이 연구를 통해 운동 혹은 AICAR (aminoimidazole-4-carboxamide-1-${\beta}$-D-ribofuranoside)처치로 활성 화된 AMPK(5'-AMP- activated protein kinase) 신호전달체계가 미토콘드리아 생합성을 증가시키는 경로에 자식작용이 관여하는지의 여부를 확인하고자 하였다. 연구결과에 따르면, 6시간의 급성운동으로 쥐의 골격근에서 PGC-1(peroxisome proliferator-activated receptor gamma coactivator 1)과 mtTFA (mitochondrial transcription factor A)의 mRNA 발현이 유의하게 증가하였다. 하지만 자식작용 표지제인 LC3(microtubule-associated proteinl light chain 3)의 mRNA 발현은 증가경향을 나타냈지만 유의하지 않았다. 한편 C2C12 근세포에서도 AICAR 처치에 의해 PGC-1, mtTFA mRNA 발현이 모두 증가하였지만, 이러한 증가는 LC3 SiRNA에 의해서 억제되지 않는 것으로 나타났다. 이러한 결과들을 통해 자식작용은 AMPK에 의해 조절되는 신호전달 전달체계와는 다른 경로로 미토콘드리아 생합성에 영향을 미칠 것으로 사료된다.

삼색싸리 메탄올 추출물의 3T3-L1지방세포와 db/db 마우스에서의 PPARγ 작용제와 인슐린 유사효과를 통한 혈당조절 개선효과 (Methanol extract of Lespedeza maximowiczii var. tricolor Nakai improves glucose metabolism through PPARγ agonist and insulin-mimetic effect in 3T3-L1 adipocytes and db/db mice)

  • 박철민;김휘;류동영
    • Journal of Applied Biological Chemistry
    • /
    • 제62권4호
    • /
    • pp.417-424
    • /
    • 2019
  • 이 연구의 목적은 당 대사에 대한 삼색싸리(Lespedeza maximowiczii var. tricolor Nakai; LMTN)의 효과를 조사하는 것이다. LMTN 추출물은 대조군과 비교하여 3T3-L1 지방 세포에서 당 섭취능 및 지질축적을 유의하게 향상시켰다. 또한, 3T3-L1 지방 세포에서 LMTN 추출물은 퍼옥시좀 증식제 활성화 수용체(PPAR)γ, 인슐린수용체기질-1 (IRS-1) 및 포도당수송체(GLUT)4의 단백질 발현을 유의하게 증가시켰다. LMTM 추출물의 당 섭취능 또는 인슐린 신호 전달계의 조절 효과는 양성 대조물질인 트로글리타존 또는 피니톨보다 낮았지만 PPARγ 단백 활성화는 증가하였다. 또한, LMTM 추출물은 인슐린 유사효과를 나타냈다. db/db 마우스에서, LMTN 추출물(250 mg/kg BW)은 물과 식이 섭취량, 혈당, 중성지방과 총 콜레스테롤 함량을 유의적으로 감소시켰다. 더불어 지방과 근육조직에서의 PPARγ 및 GLUT4 mRNA의 발현도 LMTN 추출물 투여군에서 유의적으로 증가되었다. 따라서, 본 연구의 결과는 LMTN 추출물이 3T3-L1 지방세포 및 db/db 마우스에서 PPARγ 및 인슐린 유사효과를 통해 당 대사를 조절하는 것으로 밝혀졌다.

Involvement of protein tyrosine phosphatases in adipogenesis: New anti-obesity targets?

  • Bae, Kwang-Hee;Kim, Won Kon;Lee, Sang Chul
    • BMB Reports
    • /
    • 제45권12호
    • /
    • pp.700-706
    • /
    • 2012
  • Obesity is a worldwide epidemic as well as being a major risk factor for diabetes, cardiovascular diseases and several types of cancers. Obesity is mainly due to the overgrowth of adipose tissue arising from an imbalance between energy intake and energy expenditure. Adipose tissue, primarily composed of adipocytes, plays a key role in maintaining whole body energy homeostasis. In view of the treatment of obesity and obesity-related diseases, it is critical to understand the detailed signal transduction mechanisms of adipogenic differentiation. Adipogenic differentiation is tightly regulated by many key signal cascades, including insulin signaling. These signal cascades generally transfer or amplify the signal by using serial tyrosine phosphorylations. Thus, protein tyrosine kinases and protein tyrosine phosphatases are closely related to adipogenic differentiation. Compared to protein tyrosine kinases, protein tyrosine phosphatases have received little attention in adipogenic differentiation. This review aims to highlight the involvement of protein tyrosine phosphatases in adipogenic differentiation and the possibility of protein tyrosine phosphatases as drugs to target obesity.

생약의 Protein Tyrosine Phosphatase 1B (PTP1B) 저해활성 검색 (Screening of the Inhibitory Activity of Medicinal Plants against Protein Tyrosine Phosphatase 1B)

  • 홍정현;이명선;배은영;김영호;오현철;오원근;김보연;안종석
    • 생약학회지
    • /
    • 제35권1호통권136호
    • /
    • pp.16-21
    • /
    • 2004
  • Protein tyrosine phosphatase 1B(PTP1B) is thought to be a negative regulator in insulin signal-transduction pathway. Insulin-resistance by the activation of PTP1B is a hallmark of both type 2 diabetes and obesity. Thus, the compounds inhibiting PTP1B can improve insulin resistance and can be effective in treating type 2 diabetes and obesity. The methanol extracts of 160 herbal medicines were screened for the inhibitory activity against PTP1B. Among the tested extracts, methanol extracts of Amsonia elliptica, Areca catechu, Benincasa hispida, Morus alba, Salvia miltiorrhiza, Siegesbeckia orientalis, and Trichosanthes kirilowii showed relatively strong inhibitory activity against PTP1B.

Effects of the Insulin-like Growth Factor Pathway on the Regulation of Mammary Gland Development

  • Ha, Woo Tae;Jeong, Ha Yeon;Lee, Seung Yoon;Song, Hyuk
    • 한국발생생물학회지:발생과생식
    • /
    • 제20권3호
    • /
    • pp.179-185
    • /
    • 2016
  • The insulin-like growth factor (IGF) pathway is a key signal transduction pathway involved in cell proliferation, migration, and apoptosis. In dairy cows, IGF family proteins and binding receptors, including their intracellular binding partners, regulate mammary gland development. IGFs and IGF receptor interactions in mammary glands influence the early stages of mammogenesis, i.e., mammary ductal genesis until puberty. The IGF pathway includes three major components, IGFs (such as IGF-I, IGF-II, and insulin), their specific receptors, and their high-affinity binding partners (IGF binding proteins [IGFBPs]; i.e., IGFBP1-6), including specific proteases for each IGFBP. Additionally, IGFs and IGFBP interactions are critical for the bioactivities of various intracellular mechanisms, including cell proliferation, migration, and apoptosis. Notably, the interactions between IGFs and IGFBPs in the IGF pathway have been difficult to characterize during specific stages of bovine mammary gland development. In this review, we aim to describe the role of the interaction between IGFs and IGFBPs in overall mammary gland development in dairy cows.

어성초로부터 분리된 Quercetin의 Protein Tyrosine Phosphatase 1B 활성 (Protein Tyrosine Phosphatase 1B Activity of Quercetin from Houttuynia Cordata)

  • 최화정;배은영;노용주;백승화
    • 동의생리병리학회지
    • /
    • 제22권6호
    • /
    • pp.1532-1536
    • /
    • 2008
  • Quercetin which isolated form the roots of Houttuynia cordata. was determined on the basis of IR, ID and 2D NMR specta by direct comparison with authentic compounds. Protein tyrosine phophatase 1B (PTP1B) is thought to be a negative regulator in insulin signal-transduction pathway. Insulin-resistance by the activation of PTP1B is a hallmark of both type 2 diabetes and obesity. Thus, the compound inhibiting PTP1B can improve insulin resistance and can be effective in treating type 2 diabetes and obesity. Quercetin which measured the inhibitory activity against PTP1B was 92.1% inhibition in the 30 ${\mu}g$/mL, 83.4% inhibition in the 6 ${\mu}g$/mL and 76.5% inhibition in the 3 ${\mu}g$/mL. These results suggest that quercetin retains a potential PTP1B activity.

Mechanism of Growth Hormone Action : Recent Developments - A Review

  • Sodhi, R.;Rajput, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권12호
    • /
    • pp.1785-1793
    • /
    • 2001
  • The interaction of growth hormone with it's receptor results in dimerization of receptor, a feature known in action of certain cytokines. The interaction results in generation of number of signalling molecules. The involvement of Janus kinases, mitogen activated kinases, signal transduction and activator of transcription proteins, insulin like substrate, phosphatidylinositol 3-kinase, phospholipase C, protein kinase C is almost established in growth hormone action. There are still many missing links in explaining diversified activities of growth hormone. Amino acid sequence data for growth hormones and growth hormone receptors from a number of species have proved useful in understanding species specific effects of growth hormone. Complete understanding of growth hormone action can have implications in designing drugs for obtaining desired effects of growth hormone.

Differential Gene Expression in GPR40-Overexpressing Pancreatic ${\beta}$-cells Treated with Linoleic Acid

  • Kim, In-Su;Yang, So-Young;Han, Joo-Hui;Jung, Sang-Hyuk;Park, Hyun-Soo;Myung, Chang-Seon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.141-149
    • /
    • 2015
  • "G protein-coupled receptor 40" (GPR40), a receptor for long-chain fatty acids, mediates the stimulation of glucose-induced insulin secretion. We examined the profiles of differential gene expression in GPR40-activated cells treated with linoleic acid, and finally predicted the integral pathways of the cellular mechanism of GPR40-mediated insulinotropic effects. After constructing a GPR40-overexpressing stable cell line (RIN-40) from the rat pancreatic ${\beta}$-cell line RIN-5f, we determined the gene expression profiles of RIN-5f and RIN-40. In total, 1004 genes, the expression of which was altered at least twofold, were selected in RIN-5f versus RIN-40. Moreover, the differential genetic profiles were investigated in RIN-40 cells treated with $30{\mu}M$ linoleic acid, which resulted in selection of 93 genes in RIN-40 versus RIN-40 treated with linoleic acid. Based on the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG, http://www.genome.jp/kegg/), sets of genes induced differentially by treatment with linoleic acid in RIN-40 cells were found to be related to mitogen-activated protein (MAP) kinase- and neuroactive ligand-receptor interaction pathways. A gene ontology (GO) study revealed that more than 30% of the genes were associated with signal transduction and cell proliferation. Thus, this study elucidated a gene expression pattern relevant to the signal pathways that are regulated by GPR40 activation during the acute period. Together, these findings increase our mechanistic understanding of endogenous molecules associated with GPR40 function, and provide information useful for identification of a target for the management of type 2 diabetes mellitus.