• Title/Summary/Keyword: Insulin gene

Search Result 389, Processing Time 0.031 seconds

Analysis of Pregnancy-Associated Plasma Protein-A (PAPP-A) in Porcine Neonatal Testis (미성숙 돼지 정소 내에서의 pregnancy-associated plasma protein-A 특성 분석)

  • Lee, W.Y.;Cho, K.H.;Yeo, J.M.;Shin, Y.K.;Park, J.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.1
    • /
    • pp.5-13
    • /
    • 2020
  • The identify of biomarkers in living tissues is useful to understand the characteristics and functions of the cells. Proteins such as protein gene product 9.5, promyelocytic leukemia zinc finger, NANOG, and stage-specific embryonic antigen-1 have been identified as markers for porcine undifferentiated spermatogonia. In this study, the expression of insulin-like growth factor binding proteins (IGFBPs), a newly discovered porcine spermatogonia marker and pregnancy-associated plasma protein-A (PAPP-A), a protein regulator of IGFBPs, were characterized in 5-day-old porcine testis. To analyze the function of IGFBPs, RT-PCR was performed. IGFBP 2, 3, 4, and 6 were detected in porcine spermatogonia and PAPP-A was detected in basement regions in 5day old porcine seminiferous tubules. PAPP-A was not expressed in spermatogonia, but it was expressed in Sertoli cells. These results suggest that the expression of PAPP-A protein in Sertoli cells may regulate the development and differentiation of testicular cells through the IGF axis in porcine neonatal testis.

Identification and validation of putative biomarkers by in silico analysis, mRNA expression and oxidative stress indicators for negative energy balance in buffaloes during transition period

  • Savleen Kour;Neelesh Sharma;Praveen Kumar Guttula;Mukesh Kumar Gupta;Marcos Veiga dos Santos;Goran Bacic;Nino Macesic;Anand Kumar Pathak;Young-Ok Son
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.522-535
    • /
    • 2024
  • Objective: Transition period is considered from 3 weeks prepartum to 3 weeks postpartum, characterized with dramatic events (endocrine, metabolic, and physiological) leading to occurrence of production diseases (negative energy balance/ketosis, milk fever etc). The objectives of our study were to analyze the periodic concentration of serum beta-hydroxy butyric acid (BHBA), glucose and oxidative markers along with identification, and validation of the putative markers of negative energy balance in buffaloes using in-silico and quantitative real time-polymerase chain reaction (qRT-PCR) assay. Methods: Out of 20 potential markers of ketosis identified by in-silico analysis, two were selected and analyzed by qRT-PCR technique (upregulated; acetyl serotonin o-methyl transferase like and down regulated; guanylate cyclase activator 1B). Additional two sets of genes (carnitine palmotyl transferase A; upregulated and Insulin growth factor; downregulated) that have a role of hepatic fatty acid oxidation to maintain energy demands via gluconeogenesis were also validated. Extracted cDNA (complementary deoxyribonucleic acid) from the blood of the buffaloes were used for validation of selected genes via qRTPCR. Concentrations of BHBA, glucose and oxidative stress markers were identified with their respective optimized protocols. Results: The analysis of qRT-PCR gave similar trends as shown by in-silico analysis throughout the transition period. Significant changes (p<0.05) in the levels of BHBA, glucose and oxidative stress markers throughout this period were observed. This study provides validation from in-silico and qRT-PCR assays for potential markers to be used for earliest diagnosis of negative energy balance in buffaloes. Conclusion: Apart from conventional diagnostic methods, this study improves the understanding of putative biomarkers at the molecular level which helps to unfold their role in normal immune function, fat synthesis/metabolism and oxidative stress pathways. Therefore, provides an opportunity to discover more accurate and sensitive diagnostic aids.

Ferulic Acid Protects INS-1 Pancreatic β Cells Against High Glucose-Induced Apoptosi (INS-1 췌장 베타 세포에서 ferulic acid의 당독성 개선 효과)

  • Jae Eun Park;Ji Sook Han
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • Diabetes mellitus (DM) is one of the main global health problems. Chronic exposure to hyperglycemia can lead to cellular dysfunction that may become irreversible over time, a process that is termed glucose toxicity. Our perspective about glucose toxicity as it pertains to the pancreatic β-cell is that the characteristic decreases in insulin secretion are caused by regulated apoptotic gene expression. In this study, we examined whether ferulic acid protects INS-1 pancreatic cells against high glucose-induced apoptosis. High glucose concentration (30 mM) induced glucotoxicity and death of INS-1 pancreatic β cells. However, treatment with 1, 5, 10, or 20 μM ferulic acid increased the cell viability in a concentration-dependent manner. Treatment with ferulic acid dose-dependently decreased the intracellular levels of reactive oxygen species, thiobarbituric acid reactive substances, and nitric oxide in INS-1 pancreatic β cells pretreated with high glucose. These effects influence the apoptotic pathway, increasing the expression of the anti-apoptotic protein Bcl-2 and reducing the levels of pro-apoptotic proteins, including Bax, cytochrome C, and caspase 9. Annexin V/propidium iodide staining indicated that ferulic acid significantly reduced high glucose-induced apoptosis. These results demonstrate that ferulic acid is a potential therapeutic agent to protect INS-1 pancreatic β cells against high glucose-induced apoptosis.

Interactions Between Genetic Risk Score and Healthy Plant Diet Index on Cardiometabolic Risk Factors Among Obese and Overweight Women

  • Fatemeh Gholami;Mahsa Samadi;Niloufar Rasaei;Mir Saeid Yekaninejad;Seyed Ali Keshavarz;Gholamali Javdan;Farideh Shiraseb;Niki Bahrampour;Khadijeh Mirzaei
    • Clinical Nutrition Research
    • /
    • v.12 no.3
    • /
    • pp.199-217
    • /
    • 2023
  • People with higher genetic predisposition to obesity are more susceptible to cardiovascular diseases (CVDs) and healthy plant-based foods may be associated with reduced risks of obesity and other metabolic markers. We investigated whether healthy plant-foods-rich dietary patterns might have inverse associations with cardiometabolic risk factors in participants at genetically elevated risk of obesity. For this cross-sectional study, 377 obese and overweight women were chosen from health centers in Tehran, Iran. We calculated a healthy plant-based diet index (h-PDI) in which healthy plant foods received positive scores, and unhealthy plant and animal foods received reversed scores. A genetic risk score (GRS) was developed based on 3 polymorphisms. The interaction between GRS and h-PDI on cardiometabolic traits was analyzed using a generalized linear model (GLM). We found significant interactions between GRS and h-PDI on body mass index (BMI) (p = 0.02), body fat mass (p = 0.04), and waist circumference (p = 0.056). There were significant gene-diet interactions for healthful plant-derived diets and BMI-GRS on high-sensitivity C-reactive protein (p = 0.03), aspartate aminotransferase (p = 0.04), alanine transaminase (p = 0.05), insulin (p = 0.04), and plasminogen activator inhibitor 1 (p = 0.002). Adherence to h-PDI was more strongly related to decreased levels of the aforementioned markers among participants in the second or top tertile of GRS than those with low GRS. These results highlight that following a plant-based dietary pattern considering genetics appears to be a protective factor against the risks of cardiometabolic abnormalities.

Molecular Characterization of Hanwoo Glucose Transporter 4 Gene (한우 Glucose Transporter 4 유전자의 분자생물학적 해석)

  • Lee, S.M.;Jeong, Y.H.;Kim, H.M.;Park, H.Y.;Yoon, D.H.;Moon, S.J.;Chung, E.R.;Kang, M.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.1087-1094
    • /
    • 2005
  • The uptake of glucose for metabolism and growth is essential to most animal cells and is mediated by glucose transport protein. In the glucose transport protein family, GLUT4 plays a key role in cellular glucose uptake stimulated by insulin in skeletal muscles and adipose tissue in rodents and human. In this studies, we reported the identification, characterization, and expression of Hanwoo GLUT4 gene. The Hanwoo GLUT4 cDNA includes a 1527 bp open reading frame encoding a protein of 509 amino acids. The GLUT4 amino acid sequences of the Hanwoo show strong conservation with the corresponding sequences reported in other species. The highest mRNA expression of GLUT4 was detected in heart and lower expression was detected in rib meat, sirloin, and colon. We confirmed the expression of GLUT4 in the subcutaneous and small intestinal adipose tissue using RT-PCR. To investigate the expression of GLUT4 in the bovine intramuscular adipose differentiation, fibroblast-like cells were isolated from the sirloin of Hanwoo bull aged 12 months by collagenase digestion of minced tissue and cultured with activators of PPAR gamma. We identified that GLUT4 mRNA expression decreased during differentiation of preadipocytes into adipocyte in Korean cattle. These results indicated that function of GLUT4 in bovine adipose tissue was different from that of mouse and human.

Effects of interaction between SLC12A3 polymorphism, salt-sensitive gene, and sodium intake on risk of child obesity (소금민감성 SLC12A3 유전자 다형성에 따른 나트륨섭취가 소아비만에 미치는 영향)

  • Jung, Joohyun;Lee, Myoungsook
    • Journal of Nutrition and Health
    • /
    • v.50 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • Purpose: Obesogenic environments in children, in particular excessive intake of sodium, generate hypertension, which is a major risk factor for chronic diseases. Methods: In all, 725 children, 379 boys and 373 girls, aged 8~9 years were recruited from seven elementary schools in Kuro-ku, Seoul. To evaluate whether or not obesity risk was modulated by salt-sensitive genes, Solute Carrier Familiy 12 member 3 (SLC12A3) was used as the target. After children were assigned into obese (BMI > 85 percentile) or non-obese groups, anthropometry, blood biochemistry, and dietary intakes were measured according to the genotypes GG (wild) or GA+AA (hetero+mutant). Results: Without gender differences, high TG and low HDLc were detected in the obese group compared to the non-obese group. Regardless of obesity, weight gain and blood pressure (BP) increased in the SLC12A3 GA+AA genotype rather than in the GG type. HDLc was associated with obesity risk without genotype difference. Odd ratios for risk of obesity were 15.57 (95% CI 2.192~110.654), 22.84 (95% CI 1.565~333.469), and 9.32 (95%CI 1.262~68.817) in boys and girls with GA+AA genotypes as sodium intake increased above 4,000 mg/day. Dietary calcium, sodium, folate, and vit C were associated with obesity risk according to gender or genotype differences. Since high folate intake reduced obesity risk in only boys with GG type. Risk for overweight and obesity increased in boys with GA+AA genotypes and dietary habits with high sodium and cholesterol and low folate. Conclusion: The A allele of SLC12A3 rs11643718 was sensitive to development of obesity in children as sodium intake increased.

Role of the Nuclear Transcription Factor NF-κB Caused by Acute Hypoxia in the Heart (급성 저산소증 상태에서 심장 내 전사인자 NF-κB의 기능)

  • Joo, Chan Uhng;Juhng, Woo Suk;Kim, Jae Cheol;Yi, Ho Keun
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.9
    • /
    • pp.1106-1113
    • /
    • 2002
  • Purpose : Nuclear ($factor-{\kappa}BNF-{\kappa}B$) is now recognized as playing a potential role in programmed cell death and the adaptive response to various stress. Cellular hypoxia is a primary manifestation of many cardiovascular diseases. It seems that vascular endothelial growth factor (VEGF) and insulin like growth factor-I(IGF-I) have a function as a protective molecule in the heart against several stress including hypoxia. In this study, the role of $NF-{\kappa}B$ to the cellular response and regulation of protective molecules against the acute hypoxia in the heart was studied. Methods : To cause acute hypoxic stress to the heart, Sprague Dawley rats were exposed to hypoxic chamer($N_2$ 92% and $O_2$ 8%). After the hypoxic exposure, nuclear proteins, total proteins and mRNA were isolated from heart. Translocation of the transcription factors $NF-{\kappa}B$, NF-ATc, AP-1 and NKX-2.5 were evaluated by electrophoretic mobility shift assay(EMSA). The expression of IGF-I and VEGF were studied before and after the hypoxic stress by competitive-PCR, Northern hybridization and Western hybridization. To confirm the role of the $NF-{\kappa}B$ in the heart, the rats also were pretreated with diethyl-dithiocarbamic acid(DDTC) into peritoneal cavity to block $NF-{\kappa}B$ translocation into nucleus. Results : The expression of $NF-{\kappa}B$, AP-1 and NF-ATc were increased by the hypoxic stress. Increased expression of the VEGF and IGF-I were also observed by the hypoxic stress. However, the blocking of the $NF-{\kappa}B$ translocation reduced those expressions of VEGF and IGF-I. Conclusion : These results suggest that $NF-{\kappa}B$ has a protective role against the acute hypoxia through several gene expression, especially VEGF and IGF-I in heart muscle.

Effects of Garcinia cambogia Extract on the Adipogenic Differentiation and Lipotoxicity (가르시니아 캄보지아 추출물의 지방세포 분화 및 지방 독성에 미치는 영향)

  • Kang, Eun Sil;Ham, Sun Ah;Hwang, Jung Seok;Lee, Chang-Kwon;Seo, Han Geuk
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.411-416
    • /
    • 2013
  • This study aimed to examine the mechanisms underlying the effects of Garcinia cambogia extract on the adipogenic differentiation of 3T3-L1 cells and long-chain saturated fatty acid-induced lipotoxicity of HepG2 cells. 3T3-L1 preadipocytes, mouse embryonic fibroblast-adipose like cell line, were treated with MDI solution (0.5 mM IBMX, 1 ${\mu}M$ dexamethasone, 10 ${\mu}g/mL$ insulin) to generate a cellular model of adipocyte differentiation. Using this cellular model, the anti-obesity effect of Garcinia cambogia extract was evaluated. MDI-induced lipid accumulation and expression of adipogenesis-related genes were detected by Oil red O staining, Nile Red staining, and Western blot analysis. Effects Garcinia cambogia extract on palmitate-induced lipotoxicity was also analyzed by MTT assay, LDH release, and DAPI staining in HepG2 cells. Garcinia cambogia extract significantly suppressed the adipogenic differentiation of preadipocytes and intracellular lipid accumulation in the differentiating adipocytes. Garcinia cambogia extract also markedly inhibited the expression of peroxisome proliferator- activated receptor ${\gamma}2$ ($PPAR{\gamma}2$), CCAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$), and adipocyte protein aP2 (aP2). In addition, Garcinia cambogia extract significantly attenuated palmitate-induced lipotoxicity in HepG2 cells. Palmitateinduced cellular damage and reactive aldehydes were also significantly reduced in the presence of Garcinia cambogia extract. These findings suggest that the Garcinia cambogia extract inhibits the adipogenic differentiation of 3T3-L1 preadipocytes, probably by regulating the expression of multiple genes associated with adipogenesis such as $PPAR{\gamma}2$, $C/EBP{\alpha}$, aP2, and thereby modulating fatty acid-induced lipotoxicity to reduce cellular injury in hepatocytes.

Anti-obesity Effects of Peucedanum japonicum Thunberg L. on 3T3-L1 Cells and High-fat Diet-induced Obese Mice (식방풍잎(Peucedanum japonicum Thunberg L.)의 물추출물이 3T3-L1 세포와 고지방식이로 유도된 마우스에서 항비만 효과)

  • Jung, Ho-Kyung;Sim, Mi-Ok;Jang, Ji-Hun;Kim, Tae-Muk;An, Byeong-Kwan;Kim, Min-Suk;Jung, Won Seok
    • Korean Journal of Plant Resources
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Obesity is a pro-inflammatory state that contributes to the development of metabolic disorders such as hyperlipidemia, insulin resistance, type 2 diabetes, non-alcoholic fatty liver, and cardiovascular disease. In this study, we evaluated the inhibition of adipogenesis in 3T3-L1 cells and in high-fat diet (HFD)-induced obese mice by Peucedanum japonicum Thunberg L. water extract (PJT). Lipid accumulation measurement indicates that PJT markedly inhibited adipogenesis in a dose-dependent manner. RT-PCR results demonstrated that the mRNA expression of adipogenic transcription factors such as peroxisome proliferator-activated receptor-γ (PPARγ) and CCAAT/enhancer binding protein-α (C/EBPα) in 3T3-L1 cells were significantly down-regulated by PJT treatment. Oral administration of PJT (100, 300, and 500 ㎎/㎏, b.w/daily for 4 weeks) was conducted in high-fat diet induced obese mice and C57BL/6 mice. The PJT-administered group of HFD-induced mice had a lower body weight gain, along with decreased serum levels of glucose, triglycerides, and total cholesterol compared with the control mice, however, the HDL-cholesterol/total cholesterol ratio was increased. Furthermore, the elevated mRNA expression levels of adipogenesis related genes in the white adipose tissue of obese mice were significantly suppressed by PJT. These results indicate that PJT exhibits anti-obesity effects in obese mice by decreasing in serum lipid levels and lipogenesis related gene.