• 제목/요약/키워드: Insulin Resistance

검색결과 658건 처리시간 0.027초

Changes of Plasma Tumor Necrosis Factor α and C-Reactive Protein Levels in Patients with Hypertension Accompanied by Impaired Glucose Tolerance and their Clinical Significance

  • Xiao, Qiang;Wang, Lan-Ping;Ran, Zhang-Shen;Zhang, Xin-Huan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권8호
    • /
    • pp.3389-3393
    • /
    • 2015
  • Background: Chronic inflammation could affect the occurrence and development of malignant tumors. To explore the levels of tumor necrosis factor ${\alpha}$ (TNF-${\alpha}$) and C-reactive protein (CRP) in patients accompanied by impaired glucose tolerance (IGT) and their clinical significance. Materials and Methods: A total of 210 patients hospitalized in Affiliated Hospital of Taishan Medical University from Jun., 2013 to Dec., 2014 were selected, in which 92 cases were accompanied by IGT. Meanwhile, 80 randomly-selected healthy people by physical examination were as the control. The levels of routine biochemical indexes, plasma TNF-${\alpha}$ and CRP in all subjects were measured. Results: Both systolic and diastolic pressures in hypertension group and hypertension plus IGT group were significantly higher than in control group (p<0.01), but there was no statistical significance between these two groups (p>0.05). The levels of fasting plasma glucose (FPG) and blood glucose 2 h after taking glucose in hypertension plus IGT group were markedly higher than other groups (p<0.01). Homeostasis model assessment-insulin resistance (HOMA-IR), TNF-${\alpha}$ and CRP contents were on the progressive increase in control, hypertension and hypertension plus IGT groups, but significant differences were presented among each group (P<0.01). Hypertension accompanied by IGT had a significantly-positive association with CRP, TNF-${\alpha}$, FPG and blood glucose 2h after taking glucose. Conclusions: The levels of plasma TNF-${\alpha}$ and CPR in patients with hypertension accompanied by IGT increase significantly, indicating that inflammatory reaction in these patient increases, thus suggesting that these patients should be focused regarding cancer prevention.

Vitamin D Sufficiency: How should it be defined and what are its functional indicators?

  • Hollis Bruce W.
    • 한국영양학회:학술대회논문집
    • /
    • 한국영양학회 2004년도 추계학술대회
    • /
    • pp.22-33
    • /
    • 2004
  • It has been more than three decades since the first assay assessing circulating 25(OH)D in human subjects was performed. That publication as well as several that followed it defined 'normal' nutritional vitamin D status in human populations. Recently, the wisdom by which 'normal' circulating 25(OH)D levels in human subjects were assigned in the past has come under question. It appears that sampling human subjects, who appear to be free from disease, and assessing 'normal' circulating 25(OH)D levels by plotting a Gaussian distribution is grossly inaccurate. There are many reasons why this method is inaccurate, including race, lifestyle habits, sunscreen usage, age, latitude, and inappropriately low dietary recommendations for vitamin D. For instance, a 400IU/day. AI for vitamin D is insignificant when one considers that a 10-15 minute whole body exposure to peak summer sun will generate and release up to 20,000 IU vitamin $D_3$ into the circulation. Recent studies, which orally administered up to 10,000 IU/day vitamin $D_3$ to human subjects for several months, have successfully elevated circulating 25(OH)D levels to those observed in individuals from sun-rich environments. Further, we are now able to accurately assess sufficient circulating 25(OH)D levels utilizing specific biomarkers instead of guessing what an adequate level is. These biomarkers include intact parathyroid hormone (PTH), calcium absorption, bone mineral density (BMD), insulin resistance and pancreatic beta cell function. Using the data from these biomarkers, vitamin D deficiency should be defined as circulating levels of $25(OH)D{\leq}30ng/mL$. In certain cases, such as pregnancy and lactation, significantly higher circulating 25(OH)D levels would almost certainly be beneficial to both the mother and recipient fetus/infant.

  • PDF

Induction of heme oxygenase-1 with dietary quercetin reduces obesity-induced hepatic inflammation through macrophage phenotype switching

  • Kim, Chu-Sook;Choi, Hye-Seon;Joe, Yeonsoo;Chung, Hun Taeg;Yu, Rina
    • Nutrition Research and Practice
    • /
    • 제10권6호
    • /
    • pp.623-628
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Obesity-induced steatohepatitis accompanied by activated hepatic macrophages/Kupffer cells facilitates the progression of hepatic fibrinogenesis and exacerbates metabolic derangements such as insulin resistance. Heme oxyganase-1 (HO-1) modulates tissue macrophage phenotypes and thus is implicated in protection against inflammatory diseases. Here, we show that the flavonoid quercetin reduces obesity-induced hepatic inflammation by inducing HO-1, which promotes hepatic macrophage polarization in favor of the M2 phenotype. MATERIALS/METHODS: Male C57BL/6 mice were fed a regular diet (RD), high-fat diet (HFD), or HFD supplemented with quercetin (HF+Que, 0.5g/kg diet) for nine weeks. Inflammatory cytokines and macrophage markers were measured by ELISA and RT-PCR, respectively. HO-1 protein was measured by Western blotting. RESULTS: Quercetin supplementation decreased levels of inflammatory cytokines ($TNF{\alpha}$, IL-6) and increased that of the anti-inflammatory cytokine (IL-10) in the livers of HFD-fed mice. This was accompanied by upregulation of M2 macrophage marker genes (Arg-1, Mrc1) and downregulation of M1 macrophage marker genes ($TNF{\alpha}$, NOS2). In co-cultures of lipid-laden hepatocytes and macrophages, treatment with quercetin induced HO-1 in the macrophages, markedly suppressed expression of M1 macrophage marker genes, and reduced release of MCP-1. Moreover, these effects of quercetin were blunted by an HO-1 inhibitor and deficiency of nuclear factor E2-related factor 2 (Nrf2) in macrophages. CONCLUSIONS: Quercetin reduces obesity-induced hepatic inflammation by promoting macrophage phenotype switching. The beneficial effect of quercetin is associated with Nrf2-mediated HO-1 induction. Quercetin may be a useful dietary factor for protecting against obesity-induced steatohepatitis.

Directed Causal Network Construction Using Linkage Analysis with Metabolic Syndrome-Related Expression Quantitative Traits

  • Kim, Kyee-Zu;Min, Jin-Young;Kwon, Geun-Yong;Sung, Joo-Hon;Cho, Sung-Il
    • Genomics & Informatics
    • /
    • 제9권4호
    • /
    • pp.143-151
    • /
    • 2011
  • In this study, we propose a novel, intuitive method of constructing an expression quantitative trait (eQT) network that is related to the metabolic syndrome using LOD scores and peak loci for selected eQTs, based on the concept of gene-gene interactions. We selected 49 eQTs that were related to insulin resistance. A variance component linkage analysis was performed to explore the expression loci of each of the eQTs. The linkage peak loci were investigated, and the "support zone" was defined within boundaries of an LOD score of 0.5 from the peak. If one gene was located within the "support zone" of the peak loci for the eQT of another gene, the relationship was considered as a potential "directed causal pathway" from the former to the latter gene. SNP markers under the linkage peaks or within the support zone were searched for in the database to identify the genes at the loci. Two groups of gene networks were formed separately around the genes IRS2 and UGCGL2. The findings indicated evidence of networks between genes that were related to the metabolic syndrome. The use of linkage analysis enabled the construction of directed causal networks. This methodology showed that characterizing and locating eQTs can provide an effective means of constructing a genetic network.

Diol-ginsenosides from Korean Red Ginseng delay the development of type 1 diabetes in diabetes-prone biobreeding rats

  • Ju, Chung;Jeon, Sang-Min;Jun, Hee-Sook;Moon, Chang-Kiu
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.619-626
    • /
    • 2020
  • Background: The effects of diol-ginsenoside fraction (Diol-GF) and triol-ginsenoside fraction (Triol-GF) from Korean Red Ginseng on the development of type 1 diabetes (T1D) were examined in diabetes-prone biobreeding (DP-BB) rats that spontaneously develop T1D through an autoimmune process. Methods: DP-BB female rats were treated with Diol-GF or Triol-GF daily from the age of 3-4 weeks up to 11-12 weeks (1 mg/g body weight). Results: Diol-GF delayed the onset, and reduced the incidence, of T1D. Islets of Diol-GF-treated DP-BB rats showed significantly lower insulitis and preserved higher plasma and pancreatic insulin levels. Diol-GF failed to change the proportion of lymphocyte subsets such as T cells, natural killer cells, and macrophages in the spleen and blood. Diol-GF had no effect on the ability of DP-BB rat splenocytes to induce diabetes in recipients. Diol-GF and diol-ginsenoside Rb1 significantly decreased tumor necrosis factor α production, whereas diol-ginsenosides Rb1 and Rd decreased interleukin 1β production in RAW264.7 cells. Furthermore, mixed cytokine- and chemical-induced β-cell cytotoxicity was greatly inhibited by Diol-GF and diol-ginsenosides Rc and Rd in RIN5mF cells. However, nitric oxide production in RAW264.7 cells was unaffected by diol-ginsenosides. Conclusion: Diol-GF, but not Triol-GF, significantly delayed the development of insulitis and T1D in DP-BB rats. The antidiabetogenic action of Diol-GF may result from the decrease in cytokine production and increase in β-cell resistance to cytokine/free radical-induced cytotoxicity.

Study on Relationship between Tumor Necrosis $Factor-\alpha$ Gene Polymorphism and Obese Patients

  • Kang Byung-Ku;Lee Si-Hyeong;Shin Jo-Young
    • 대한한의학회지
    • /
    • 제26권1호
    • /
    • pp.85-92
    • /
    • 2005
  • Objective: A number of candidate genes have been in implicated in the pathogenesis of obesity in humans. Tumor necrosis factor-alpha $(TNF-{\alpha})$ is expressed primarily in adipocytes, and elevated levels of this cytokine have been linked to obesity and insulin resistance. Recently, the A allele of a polymorphism at position 308 in the promoter region of $TNF-{\alpha}$ (G-308A) has been shown to increase transcription of the gene in adipocytes. Therefore, we designed this study to test whether obese and non-obese subjects differ in $TNF-{\alpha}$ genotype distribution, and how the genotypes affect anthropometric parameters, including degrees of body mass index (BMI). Methods : The study included 153 obese but otherwise healthy women ($BMI{\geq}kg/m^2$, range 25-54.7, age range 15-40 years) and 82 non-obese healthy women ($BMI, age range 15-40 years). Total fat mass and percent body fat were determined by dual-energy X-ray absorptiometry. Genomic DNA was extracted and used for Ncol restriction fragment length polymorphism (RFLP) based genotyping of $TNF-{\alpha}$. Results: No differences were observed for allelic and genotype frequencies between the obese ($BMI{\geq}25$) and non-obese women. Also, no association of TNF-(l polymorphism was observed with body mass index (BMI) for genotype in obese women. In addition, age, pertent body fat, BMI, and cholesterol levels did not differ by $TNF-{\alpha}$ genotype. However, waist-to­hip ratio (WHR) was significantly lower in subjects with $TNF-{\alpha}$ GA or AA genotype (0.94 0.07 vs. 0.920.03, P<0.005). Conclusion: These results suggest that $TNF-{\alpha}$ promoter polymorphism at position-308 is not a significant factor for BMI, but affects the WHR in obese healthy women from Koreans.

  • PDF

Ginseng seed oil ameliorates hepatic lipid accumulation in vitro and in vivo

  • Kim, Go Woon;Jo, Hee Kyung;Chung, Sung Hyun
    • Journal of Ginseng Research
    • /
    • 제42권4호
    • /
    • pp.419-428
    • /
    • 2018
  • Background: Despite the large number of studies on ginseng, pharmacological activities of ginseng seed oil (GSO) have not been established. GSO is rich in unsaturated fatty acids, mostly oleic and linoleic acids. Unsaturated fatty acids are known to exert a therapeutic effect in nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the protective effect and underlying mechanisms of GSO against NAFLD using in vitro and in vivo models. Methods: In vitro lipid accumulation was induced by free fatty acid mixture in HepG2 cells and by 3 wk of high fat diet (HFD)-feeding in Sprague-Dawley rats prior to hepatocyte isolation. The effects of GSO against diet-induced hepatic steatosis were further examined in C57BL/6J mice fed a HFD for 12 wk. Results: Oil Red O staining and intracellular triglyceride levels showed marked accumulation of lipid droplets in both HepG2 cells and rat hepatocytes, and these were attenuated by GSO treatment. In HFD-fed mice, GSO improved HFD-induced dyslipidemia and hepatic insulin resistance. Increased hepatic lipid contents were observed in HFD-fed mice and it was lowered in GSO (500 mg/kg)-treated mice by 26.4% which was evident in histological analysis. Pathway analysis of hepatic global gene expression indicated that GSO increased the expression of genes associated with ${\beta}$-oxidation (Ppara, Ppargc1a, Sirt1, and Cpt1a) and decreased the expression of lipogenic genes (Srebf1 and Mlxipl), and these were confirmed with reverse transcription and quantitative polymerase-chain reaction. Conclusion: These findings suggest that GSO has a beneficial effect on NAFLD through the suppression of lipogenesis and stimulation of fatty acid degradation pathway.

Pathway Analysis of Metabolic Syndrome Using a Genome-Wide Association Study of Korea Associated Resource (KARE) Cohorts

  • Shim, Unjin;Kim, Han-Na;Sung, Yeon-Ah;Kim, Hyung-Lae
    • Genomics & Informatics
    • /
    • 제12권4호
    • /
    • pp.195-202
    • /
    • 2014
  • Metabolic syndrome (MetS) is a complex disorder related to insulin resistance, obesity, and inflammation. Genetic and environmental factors also contribute to the development of MetS, and through genome-wide association studies (GWASs), important susceptibility loci have been identified. However, GWASs focus more on individual single-nucleotide polymorphisms (SNPs), explaining only a small portion of genetic heritability. To overcome this limitation, pathway analyses are being applied to GWAS datasets. The aim of this study is to elucidate the biological pathways involved in the pathogenesis of MetS through pathway analysis. Cohort data from the Korea Associated Resource (KARE) was used for analysis, which include 8,842 individuals (age, $52.2{\pm}8.9years$ ; body mass index, $24.6{\pm}3.2kg/m^2$). A total of 312,121 autosomal SNPs were obtained after quality control. Pathway analysis was conducted using Meta-analysis Gene-Set Enrichment of Variant Associations (MAGENTA) to discover the biological pathways associated with MetS. In the discovery phase, SNPs from chromosome 12, including rs11066280, rs2074356, and rs12229654, were associated with MetS (p < $5{\times}10^{-6}$), and rs11066280 satisfied the Bonferroni-corrected cutoff (unadjusted p < $1.38{\times}10^{-7}$, Bonferroni-adjusted p < 0.05). Through pathway analysis, biological pathways, including electron carrier activity, signaling by platelet-derived growth factor (PDGF), the mitogen-activated protein kinase kinase kinase cascade, PDGF binding, peroxisome proliferator-activated receptor (PPAR) signaling, and DNA repair, were associated with MetS. Through pathway analysis of MetS, pathways related with PDGF, mitogen-activated protein kinase, and PPAR signaling, as well as nucleic acid binding, protein secretion, and DNA repair, were identified. Further studies will be needed to clarify the genetic pathogenesis leading to MetS.

Glucosamine increases vascular contraction through activation of RhoA/Rho kinase pathway in isolated rat aorta

  • Kim, Do-Hyung;Seok, Young-Mi;Kim, In-Kyeom;Lee, In-Kyu;Jeong, Seong-Yun;Jeoung, Nam-Ho
    • BMB Reports
    • /
    • 제44권6호
    • /
    • pp.415-420
    • /
    • 2011
  • Diabetes is a well-known independent risk factor for vascular disease. However, its underlying mechanism remains unclear. It has been reported that increased influx of the hexosamine biosynthesis pathway (HBP) induces O-GlcNAcylation of proteins, leading to insulin resistance. In this study, we determined whether or not O-GlcNAc modification of proteins could increase vessel contraction. Using an endothelium-denuded aortic ring, we observed that glucosamine induced OGlcNAcylation of proteins and augmented vessel contraction stimulated by U46619, a thromboxane $A_2$ agonist, via augmentation of the phosphorylation of MLC20$MLC_{20}$, MYPT1(Thr855), and CPI17, but not phenylephrine. Pretreatment with OGT inhibitor significantly ameliorated glucosamine-induced vessel constriction. Glucosamine treatment also increased RhoA activity, which was also attenuated by OGT inhibitor. In conclusion, glucosamine, a product of glucose influx via the HBP in a diabetic state, increases vascular contraction, at least in part, through activation of the RhoA/Rho kinase pathway, which may be due to O-GlcNAcylation.

Effects of fermented ginseng root and ginseng berry on obesity and lipid metabolism in mice fed a high-fat diet

  • Li, Zhipeng;Kim, Hee Jung;Park, Myeong Soo;Ji, Geun Eog
    • Journal of Ginseng Research
    • /
    • 제42권3호
    • /
    • pp.312-319
    • /
    • 2018
  • Background: Previous studies have shown that both ginseng root and ginseng berry exhibit antiobesity and antidiabetic effects. However, a direct comparison of the efficacy and mechanisms between the root and the berry after oral administration remains to be illuminated. Methods: In this study, we observed the effects of fermented ginseng root (FGR) and fermented ginseng berry (FGB) on obesity and lipid metabolism in high-fat diet induced obese mice. Results: FGR and FGB significantly inhibited the activity of pancreatic lipase in vitro. Both FGR and FGB significantly suppressed weight gain and excess food intake and improved hypercholesterolemia and fatty liver, while only FGR significantly attenuated hyperglycemia and insulin resistance. Both FGR and FGB significantly inhibited the mRNA expression of Ldlr and Acsl1 while FGR also significantly inhibited expression of Cebpa and Dgat2 in liver. FGR significantly decreased the epididymal fat weight of mice while FGB significantly inhibited the mRNA expression of genes Cebpa, Fas, Hsl, Il1b, and Il6 in adipose tissue. Conclusion: Saponin from both FGR and FGB had a beneficial effect on high-fat diet-induced obesity. Compared to FGB, FGR exhibited more potent antihyperglycemic and antiobesity effect. However, only FGB significantly inhibited mRNA expression of inflammatory markers such as interleukins $1{\beta}$ and 6 in adipose tissue.