• Title/Summary/Keyword: Insulation testing

Search Result 150, Processing Time 0.033 seconds

Review about test method for the full-insulation verification of circuit breaker rated on 800kV, 50kA (800kV, 50kA 차단기의 전절연 검증을 위한 시험방법 검토)

  • Park, Seung-Jae;Suh, Yoon-Taek;Yoon, Hack-Dong;Kim, Yong-Sik;Kim, Maeng-Hyun;Koh, Heui-Seog
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.569-571
    • /
    • 2005
  • In case of dead-tank circuit breaker with the earthed enclosure, the dielectric performance for phase to ground should be verified under the hot-gas condition produced by the current interruption. This test condition is required in breaking test duties with the rated short-circuit current and rated voltage. And, KERI has completed the reinforcement of the synthetic testing facilities and these facilities have the testing capacity which enables the full-pole testing for 800kV circuit breaker by adopting the series voltage injection method. So, this paper introduced the test circuit and procedures about the full-pole and the multi-part testing method which was devised to estimate the full -insulation of phase-to-ground for the multi-pole and dead-tank circuit breaker.

  • PDF

Assessment of Insulation Condition in Gas Turbine Generator Stator Windings (가스터빈 발전기 고정자 권선의 절연상태 평가)

  • Kim, Hee-Dong;Yang, Gyu-Hyun;Ju, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1423-1428
    • /
    • 2010
  • The results of off-line and on-line diagnostic tests performed on the stator winding of an air-cooled gas turbine(G/T) generator are reported in this paper. Off-line diagnostic tests included measurements of the ac current, dissipation factor(tan${\delta}$), and partial discharge(PD). Six epoxy-mica capacitors were installed in the three phases of G/T generator for performing on-line diagnostic testing with the turbine generator analyzer(TGA). The TGA showed that the normalized quantity number(NQN) and the PD magnitude($Q_m$) were high in phase A of the stator winding. Internal discharges were generated in phases B and C, and slot discharge occurred in phase A. According to the trend analyses of the NQN and $Q_m$ values available for insulation condition assessment for G/T generator stator windings, it was concluded that phases B and C were in good condition, whereas phase A has been significantly deteriorated.

ANN Based System for the Detection of Winding Insulation Condition and Bearing Wear in Single Phase Induction Motor

  • Ballal, M.S.;Suryawanshi, H.M.;Mishra, Mahesh K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.485-493
    • /
    • 2007
  • This paper deals with the problem of detection of induction motor incipient faults. Artificial Neural Network (ANN) approach is applied to detect two types of incipient faults (1). Interturn insulation and (2) Bearing wear faults in single-phase induction motor. The experimental data for five measurable parameters (motor intake current, rotor speed, winding temperature, bearing temperature and the noise) is generated in the laboratory on specially designed single-phase induction motor. Initially, the performance is tested with two inputs i.e. motor intake current and rotor speed, later the remaining three input parameters (winding temperature, bearing temperature and the noise) were added sequentially. Depending upon input parameters, the four ANN based fault detectors are developed. The training and testing results of these detectors are illustrated. It is found that the fault detection accuracy is improved with the addition of input parameters.

The Thermal Performance of Building Insulation Materials According to Long-Term Aging (건축용 단열재의 장기 경시변화에 따른 열성능 특성)

  • Choi, Bo-Hye;Kang, Jae-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.617-623
    • /
    • 2013
  • This study is to draw thermal property data during long-term aging, by testing the thermal conductivity of building insulation materials in Korea. The thermal resistance of extruded insulation within 3 days from manufacture performed well over the KS Standard. After 50 to 110 days, however, the thermal performance had deteriorated to the level of the KS standard. Eventually, after 4,000 days, the insulation performance had deteriorated to about 25.4~41.8% of the initial performance. Therefore, this research will be utilized as a reference for thermal properties during long-term aging, in order to improve standards and regulations related to building insulation materials.

Study on the Electrical Insulation of Current Lead in the conduction-cooled 1-2kV Class High-Tc Superconducting DC Reactor (전도냉각되는 1-2kV급 고온초전도 직류리액터 전류도입부의 전기적 절연에 대한 연구)

  • 배덕권;안민철;이찬주;정종만;고태국;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.30-34
    • /
    • 2002
  • In this Paper, Insulation of current lead in the conduction-cooled DC reactor for the 1.2kV class 3 high-Tc superconducting fault current limiter(SFCL) is studied. Thermal link which conducts heat energy but insulates electrical energy is selected as a insulating device for the current lead in the conduction-cooled Superconducting DC reactor. It consists of oxide free copper(OFC) sheets, Polyimide films, glass fiberglass reinforced Plastics (GFRP) plates and interfacing material such an indium or thermal compound. Through the test of dielectric strength in L$N_2$, polyimide film thickness of 125 ${\mu}{\textrm}{m}$ is selected as a insulating material. Electrical insulation and heat conduction are contrary to each other. Because of low heat conductivity of insulator and contact area between electrical insulator and heat conductor, thermal resistance of conduction-cooled system is increased. For the reducing of thermal resistance and the reliable contact between Polyimide and OFC, thermal compound or indium can be used As thermal compound layer is weak layer in electrical field, indium is finally selected for the reducing of thermal resistance. Thermal link is successfully passed the test. The testing voltage was AC 2.5kVrms and the testing time was 1 hour.

A Study on the Design of the rated insulation voltage of 690V for the low-voltage switchgear and controlgear (저압기기 정격절연전압 690V 개발시 고려사항에 대한 연구)

  • Kim, Myoung-Seok;Kim, Jong-Yeok;Park, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.961-963
    • /
    • 2000
  • Most of the application standard of the low-voltage devices have applied one the IEC standard another the UL standard. European union applied the IEC60947-1 standard has not exceed 1000V a.c. or 1500V d.c.. Therefore. it is necessary to the low-voltage device has expended for rated operational voltage with our products. The export of European market shall be made for the CE-Marking in accordance with IEC60947-1 ( Low-voltage switchgear and controlgear). We shall be considered for the requirement with the IEC standard. In this time to study for power supply system at EU ( European union. At that time for design and development in order to the construction and test method among the study for the rated insulation voltage at less then 690V.

  • PDF

Study on Long-term Performance of Phenolic Foam Insulation through Accelerated Aging Test (가속화 시험을 통한 페놀폼 단열재의 장기성능 비교분석에 관한 연구)

  • Kim, Jin-Hee;Kim, Sang-Myung;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.11-23
    • /
    • 2020
  • The application of the high-performance insulation materials for buildings seems to be an essential measure for reducing energy use in buildings. Phenolic foam is a readily available insulation material with thermal conductivity of about 0.018 to 0.020 W/(mK). It has the advantage of higher thermal resistance and better fire resistance compared to other conventional building insulation materials. Insulation material used for building envelope is regarded as one of the decisive factors for building's energy load. Furthermore, the degradation of its thermal performance over time increasingly affects the building's energy use demand. Generally, the life span of conventionally built buildings is expected to be more than 50 years, so the long-term performance of insulation materials is critical. This paper aims to evaluate the long-term performance of phenolic form boards through an accelerated aging test. The tests were conducted according to BS EN 13166 and KS M ISO 11561. Based on the results of the accelerated aging test, the thermal performance variation of the material was analyzed, and then its aged value after 25 years was computed. Also, the characteristics of the phenolic foam board's long-term performance were also examined based on the standard testing methods adopted.

Efficiency of insulation layers in fire protection of FRP-confined RC columns-numerical study

  • El-Mahdya, Osama O.;Hamdy, Gehan A.;Hisham, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.673-689
    • /
    • 2021
  • This paper addresses the efficiency of thermal insulation layers applied to protect structural elements strengthened by fiber-reinforced polymers (FRP) in the case of fire event. The paper presents numerical modeling and nonlinear analysis of reinforced concrete (RC) columns externally strengthened by FRP and protected by thermal insulation layers when subjected to elevated temperature specified by standard fire tests, in order to predict their residual capacity and fire endurance. The adopted numerical approach uses commercial software includes heat transfer, variation of thermal and mechanical properties of concrete, steel reinforcement, FRP and insulation material with elevated temperature. The numerical results show good agreement with published results of full-scale fire tests. A parametric study was conducted to investigate the influence of several variables on the structural response and residual capacity of insulated FRP-confined columns loaded by service loads when exposed to fire. The residual capacity of FRP-confined RC column was affected by concrete grade and insulation material and was shown to improve substantially by increasing the concrete cover and insulation layer thickness. By increasing the VG insulation layer thickness 15, 32, 44, 57 mm, the loss in column capacity after 5 hours of fire was 30%, 13%, 7% and 5%, respectively. The obtained results demonstrate the validity of the presented approach for estimation of fire endurance and residual strength, as an alternative for fire testing, and for design of fire protection layers for FRP-confined RC columns.

Design of Accelerated Life Testing for Reliability Assurance of Electrical Apparatus (전기기기 신뢰성 보증을 위한 가속수명시험 설계)

  • Kim, M.K.;Lee, J.G.;Kim, I.S.;Jeong, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1498-1499
    • /
    • 2007
  • In general, ALT can be used to expect the lifetime of electric machines and accelerated stress testing(AST) is used to evaluate the residual life of insulation system. In this paper, a method to design the accelerated life testing(ALT) for reliability qualification of electrical apparatus is represented.

  • PDF