• Title/Summary/Keyword: Insulation systems

Search Result 419, Processing Time 0.024 seconds

Comparison of Insulation Coordination Between ±800kV and ±1100kV UHVDC Systems

  • Wang, Dong-ju;Zhou, Hao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1773-1779
    • /
    • 2015
  • Insulation coordination is a key problem in UHVDC systems in terms of safety and cost. Although high-voltage ±1100kV UHVDC projects are being planned in China, the characteristics and key points of high-voltage systems have not yet been analyzed. This study aims to improve the safe, effective operation of these high-voltage power transmission systems. First, we analyzed two typical insulation coordination schemes used in ±800kV UHVDC systems in China. Next, we used the two typical ±800kV insulation coordination schemes as a reference to analyze the ±1100kV UHVDC system. Finally, we compared these schemes and proposed an effective insulation coordination solution, as well as developing principles for ±1100kV UHVDC systems. Our findings indicate that the points enduring the highest voltage in the system should be protected separately by special arresters. Our analysis of the insulation coordination of ±800kV and ±1100kV UHVDC systems concluded that, in ±1100kV UHVDC systems, the main goal of insulation coordination is to lower the insulation level of points enduring the highest voltage. However, in a ±800kV UHVDC system, the main goal is to reduce the cost of manufacture for arresters, as well as the space occupation in the valve hall, with an acceptable insulation level.

A study on the optimal design for heat insulation of hot water piping systems using a dynamic programming (동적계획법을 이용한 고온수배관의 최적보온설계에 관한 연구)

  • 유희한;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.39-52
    • /
    • 1987
  • Recently, the design problem of heat insulation have been reappraised in the aspect of energy saving due to the rising trend of energy cost. For example, that design problem is increasingly requsted in the fields of accommodation air conditioning systems, hot water supply systems, cargo handling systems, district heating or cooling systems. The rational design of heat insulation of piping systems can not only improve the overall efficiency of energy transfer but also give energy saving. In this paper, the heat insulation problem of district heating systems is therefore modeled as the multi-stage decision processes, suitable for dynamic programming technique. And take the object function as the sum of heat insulation material cost involved construction cost and heat loss cost, and propose the design method to minimize the object function for overall piping systems by dynamic programing. Effectiveness of design method presented here is proved by a computer simulation.

  • PDF

Effects of the structural strength of fire protection insulation systems in offshore installations

  • Park, Dae Kyeom;Kim, Jeong Hwan;Park, Jun Seok;Ha, Yeon Chul;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.493-510
    • /
    • 2021
  • Mineral wool is an insulation material commonly used in passive fire protection (PFP) systems on offshore installations. Insulation materials have only been considered functional materials for thermal analysis in the conventional offshore PFP system design method. Hence, the structural performance of insulation has yet to be considered in the design of PFP systems. However, the structural elements of offshore PFP systems are often designed with excessive dimensions to satisfy structural requirements under external loads such as wind, fire and explosive pressure. To verify the structural contribution of insulation material, it was considered a structural material in this study. A series of material tensile tests was undertaken with two types of mineral wool at room temperature and at elevated temperatures for fire conditions. The mechanical properties were then verified with modified methods, and a database was constructed for application in a series of nonlinear structural and thermal finite-element analyses of an offshore bulkhead-type PFP system. Numerical analyses were performed with a conventional model without insulation and with a new suggested model with insulation. These analyses showed the structural contribution of the insulation in the structural behaviour of the PFP panel. The results suggest the need to consider the structural strength of the insulation material in PFP systems during the structural design step for offshore installations.

Design of Intelligent Insulation Degradation Sensor

  • Kim, Yi-Gon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.191-193
    • /
    • 2002
  • Insulation aging diagnosis system provides early warning in regard to electrical equipment defects. Early warning is very important in that it can avoid great losses resulting from unexpected shutdown of the production line. For solving this problem, many researchers proposed a method that diagnose power plant by using partial discharge. In this paper, we design the intelligent sensor to diagnose insulation degradation state that uses a Microprocessor and Al. Proposed sensor has MCU that is used to diagnose insulation degradation and communicate with main IDD system. And we use a fuzzy model to diagnose insulation degradation.

Protective Insulation Monitoring Device in IT Earth Systems (IT접지방식의 보호를 위한 활선절연저항 감시기)

  • Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.209-213
    • /
    • 2015
  • With the increasing popularity of renewable generation systems and the advancement of power electronics, DC distribution systems have recently received considerable research attention. DC distribution has numerous advantages, including reliability, power quality, and efficiency. Owing to these advantages, DC distribution has been applied to data centers and power quality-sensitive electronic load conditions. Because grounding electrodes in DC are much more susceptible to corrosion than in AC, the IT system defined in IEC Standard 60364 may be a good candidate for an earthing method for DC distribution systems. In addition, IEC Standard 61557 specifies the requirements for insulation monitoring devices (IMD) for protection of the IT system, which continuously monitors the insulation resistances between the power lines and the earth. This paper discusses the development and evaluation of IMD to promote the reliability of distribution systems and increase safety of humans and facilities.

Development of Intelligent Insulation Degradation Sensor (지능형 절연열화센서 개발)

  • 김이곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.158-161
    • /
    • 2002
  • Many methods were proposed for insulation degradation diagnosis to High voltage and capacity Transformer in live. IDD is difficult by those methods because insulation degradation circumstances and characteristics of electrical plant are different with other Therefore, it is necessary to design diagnosis algorithms fitting for each. In this paper, We develop IIDS that used diagnosis algorithm with fuzzy model and hardware with MCU.

Introduction of Insulation Coordination for UHV AC Systems

  • Shim, Eungbo;Zaima, Eiichi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1293-1297
    • /
    • 2015
  • This paper introduces the insulation coordination study results for UHV AC systems which was performed by CIGRE working group. The study results will be discussed within IEC technical committee in order to amend the IEC Insulation Coordination 60071-1 Ed. 8 2010 and 60071-2 Ed. 3, 1996. This paper includes the insulation coordination of transformer, gas insulated switchgear, metal oxide arresters and clearances of transmission towers. This article also illustrates the overvoltage specific to UHV systems such as TOV(temporary overvoltage), switching overvoltage, lightning overvoltage and VFTO(very fast transient overvoltage).

Thermal Analysis of a Cold Box for a Hydrogen Liquefaction Pilot Plant with 0.5 TPD Capacity (0.5 TPD 급 수소액화 파일럿 플랜트의 콜드박스 열해석)

  • KIM, HYOBONG;HONG, YONG-JU;YEOM, HANKIL;PARK, JIHO;KO, JUNSEOK;PARK, SEONG-JE;IN, SEHWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.6
    • /
    • pp.571-577
    • /
    • 2020
  • Thermal analysis was performed for a cold box of a hydrogen liquefaction pilot plant with 0.5 ton/day capacity. The pilot plant has adopted a hydrogen liquefaction process using two-stage helium Brayton cycle with precooling of liquid nitrogen. The cold box for hydrogen liquefaction has generally vacuum insulation but inevitable heat invasion by conduction and radiation exists. The heat loads were calculated for cold box internals according to multilayer insulation emissivity. Total heat load of 181.7 W is estimated for emissivity of 0.03 considered in field condition.

A Study on the Internal Temperature Reduction of PKG-A Water-jet-room by Substituting Heat Insulation Materials (단열재 개선을 통한 PKG-A Water Jet Room 온도저감 연구)

  • Jung, Young In;Choi, Sang Min
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.425-435
    • /
    • 2019
  • Purpose: The purpose of this study was to resolve the Naval ship's Local Operation Panel(LOP) malfunction problems which caused by overheating in summer season and dispatching to equatorial regions. Methods: Instead of using dual type heat insulation materials(consist with ceramic wool and glass wool), aerogel heat insulation materials were used for decreasing heat emissions from gas-turbine heat waste steam pipes passing water-jet- room. Experiment and Computational analysis of heat flow were conducted to analyze the internal room temperature changes. Results: The results of this study are as follows; The aerogel heat insulation materials suppress heat emission more efficiently than dual type insulation materials. The cold surface temperature of insulation was far more decreased and internal room, LOP surface temperature also showed significant results too. Conclusion: The substituted heat insulation materials appeared remarkable performance in decreasing room temperature that it could be used for suppressing the LOP overheatings and malfunctions.

The development of high efficiency isolated converter for vehicle charger (차량 충전용 고효율 절연형 컨버터 개발)

  • Park, Minjun;Jin, Hoshang;Lee, Gunhee;Hwang, Kwangkyu;Kim, Woosup;Lee, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.101-102
    • /
    • 2015
  • This paper is about the suggestion for the development in the commercialization for 3.6kW Class On-Board charger. It is suggesting non-insulation AC-DC Boost Power Factor correction circuit and insulation DC-DC resonant Converter for circuit design. In addition, Input AC voltage in the power supply is DCM control which can be designed to decrease the inductance for the inductor size to be reduced. DCM controls and Interleaved PFC can be designed to decrease the inductor size increasing the power conversions. Also, using the insulation DC-DC resonant converter, the efficiency can be increased. This system is verified using prototype hardware.

  • PDF