• Title/Summary/Keyword: Insulation Test

Search Result 922, Processing Time 0.024 seconds

Experimental study on the cryogenic thermal storage unit (TSU) below -70 ℃

  • Byeongchang Byeon;Kyoung Joong Kim;Sangkwon Jeong;Dong min Kim;Mo Se Kim;Gi Dock Kim;Jung Hun Kim;Sang Yoon Lee;Seong Woo Lee;Keun Tae Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.20-24
    • /
    • 2024
  • Over the past four years, as the COVID-19 pandemic has struck the world, cold chain of COVID-19 vaccination has become a hot topic. In order to overcome the pandemic situation, it is necessary to establish a cold chain that maintains a low-temperature environment below approximately 203K (-70℃), which is the appropriate storage temperature for vaccines, from vaccine suppliers to local hospitals. Usually, cryocoolers are used to maintain low temperatures, but it is difficult for small-scale local distribution to have cryocooler due to budget and power supply issues. Accordingly, in this paper, a cryogenic TSU (Thermal storage unit) system for vaccination cold chain is designed that can maintain low temperatures below -70℃C for a long time without using a cryocooler. The performance of the TSU system according to the energy storage material for using as TSU is experimentally evaluated. In the experiments, four types of cold storage materials were used: 20% DMSO aqueous solution, 30% DMSO aqueous solution, paraffin wax, and tofu. Prior to the experiment, the specific heat of the cold storage materials at low temperature were measured. Through this, the thermal diffusivity of the materials was calculated, and paraffin wax had the lowest value. As a result of the TSU system's low-temperature maintenance test, paraffin wax showed the best low-temperature maintenance performance. And it recorded a low-temperature maintenance time that was about 24% longer than other materials. As a result of analyzing the temperature trend by location within the TSU system, it was observed that heat intrusion from the outside was not well transmitted to the low temperature area due to the low thermal conductivity of paraffin wax. Therefore, in the TSU system for vaccine storage, it was experimentally verified that the lower the thermal diffusivity of the cold storage material, the better low temperature maintenance performance.

Yield Increase and Energy Saving Effect on Plastic Greenhouse Covered with Polyolefin Film (PO필름 피복 온실의 수량 증대 및 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kim, Jin Gu;Lee, Jae Han;Kang, Youn Koo;Lim, Mi Young;Kim, Hye Min
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.428-439
    • /
    • 2020
  • This study was carried out to investigate the effect of PO film on the increase of crop yield and energy saving through PO and PE film greenhouse application and comparison test. As a experimental greenhouse, two single span greenhouses (1-1 W) and two double span greenhouses (1-2 W) were used. During winter season, PO film (0.15 mm outer layer, 0.10mm inner layer) was used as a covering material of greenhouse in double layers for double-span (B15) and single-span(B21), and PE film used for double-span (B15), and single-span (B23) as a control. The experimental vegetable was tomato(Solanum lycopersicum L.) cultivated in soil and the cultivar of that was 'Happiness'. That was cultivated from December 3, 2019 to April 30, 2020. The temperature at night inside the greenhouse was maintained at 15℃, and the side and roof windows were opened to maintain 23 ~ 24℃ during the day. As a result, this study showed that the yield in single-span greenhouse(B21) covered with a PO film increased 20% and that in double-span greenhouse (B16) increased by 9% compared to the greenhouse covered with a PE film (B23, B15). Fuel consumption of the single-span greenhouse (B21) with the cover of PO film was reduced by 12.4% and that of double-span greenhouse was done by 11.5% compared to that of the PE film greenhouse (B23, B15) without any difference between them in growing state.