• Title/Summary/Keyword: Insulation Test

Search Result 922, Processing Time 0.03 seconds

Neural Network Model for Partial Discharge Pattern Analysis of XLPE/EPR Interface (XLPE/EPR 계면의 부분방전 패턴 분석을 위한 신경망 모형)

  • Cho, Kyung-Soon
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.357-364
    • /
    • 2005
  • The prefabricated type used generally in Korea to join cable runs on new installations or to repair broken Cable runs on existing installations, because installation is very simple and save time. This type is a permanent, shielded and submersible cable joint for direct burial or vault application. It confirms to the requirements of IEEE std. 404-1993 by factory testing, but many problems of insulated cable systems are caused by internal defects of the joint part which have to be mounted ensile. Faults arise from impurities or voids. A suitable solution for a monitoring of cable joints during the after-laying test and service is partial discharge detection. Specimen obtained 1mm thickness from the insulation of real power cable and cable joint. <중략>The partial discharges are measured to determine their time dependence for 60 minutes and the influence of applied electrical stress under 30kV. $\Phi-q-n$ properties were measured using detection impedance, high pass filter and computerized data acquisition system. Statistic Value like maximum charge, repetition rate, average charge, etc. are calculated. It is possible to quantitative analysis of $\Phi-q-n$ properties from this statistic value and pattern analysis.

  • PDF

Improvement of Strength Characteristics in ALC added Silica Powder and Gypsum (규석 분말 및 석고 혼입에 따른 경량기포콘크리트의 강도특성 개선)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.128-135
    • /
    • 2012
  • Autoclaved lightweight concrete, also known as autoclaved aerated concrete(AAC) or autoclaved cellular concrete (ACC), is made with fine silica powder, quik lime, cement, and an Al powder. ALC contains 70~80% air. The lightweight material offers excellent sound and thermal insulation, and like all cement-based materials, is strong and fire resistant. However, ALC have high water absorption, low compressive strength and popout the origin of the low surface strength in its properties. These properties make troubles under construction such as cracking and popout. Thus, this study is to improve the fundamental strength by controls of increasing of admixtures, gypsum and silica powder size. Admixtures make use of metakaolin and silica fume. From the test result, the ALC using admixture have a good fundamental properties compared with plain ALC. Compressive strength, specific strength and abrasion's ratio were improved depending on increasing admixtures ratio's, gypsum and silica powder size.

  • PDF

Analysis of Accelerated Aging Natural Ester Oil and Mineral Oil in Distributional Transformers (배전용 변압기에서의 고온열화와 열 사이클 열화에 따른 식물유와 광유의 특성 분석)

  • An, Jung-Sik;Choi, Sun-Ho;Bang, Jeong-Ju;Jung, Joong-Il;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1163-1168
    • /
    • 2011
  • Most transformers use insulating and cooling fluids derived from petroleum crude oil, but mineral oil has some possibility of environmental pollution and fire with explosion. vegetable oil fluids extracted from seed has superior biodegradation and fire-resistant properties including an exceptionally high fire point enhancing fire safety. In this study, it is aimed at the practicality of substituting natural ester dielectric fluid for mineral oil in liquid insulation system of transformers. As a rise in coil winding temperature has a direct influence on transformer life time, it is important to evaluate the temperature rise of coil winding in vegetable oil in comparison with mineral oil. Four transformers for the test are designed with 10KVA, 13.2KV, one phase unit. The temperature are directly measured in insulating oil of these transformers with the two sorts of natural ester and mineral oil dielectric fluid respectively. Experiment for aging carry out two means. First means remained $120^{\circ}C$ that transformer of mineral oil were operated at 185% load. Second means is that insulating oils of two natural ester and mineral oil were aged by thermal cycles repeating from $30^{\circ}C$ to $120^{\circ}C$. For the heating, Transformers were operated at 185% load. For the cooling, cooling system was operated in the chamber. Samples were analyzed at 42, 63, 93, 143, 190, 240 300cycles. Analysis contents are dielectric strength, total acid value. Mineral oils compared results of first means with results of second means. And compared two sort natural esters respectively with mineral oil in second means.

The development of fuel processor for compact fuel cell cogeneration system (소형 열병합 연료전지 연계형 연료처리시스템 개발)

  • Cha, Jung-Eun;Jun, Hee-Kwon;Park, Jung-Joo;Ko, Youn-Taek;Hwang, Jung-Tae;Chang, Won-Chol;Kim, Jin-Young;Kim, Tae-Won;Kim, In-Ki;Jeong, Young-Sik;Kal, Han-Joo;Yung, Wang-Rai;Jung, Woon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.323-327
    • /
    • 2009
  • To extract hydrogen for stack, fuels such as LPG and LNG were reformed in the fuel processor, which is comprised of desulfurizer, reformer, shift converter, CO remover and steam generator. All elements of fuel processor are integrated in a single package. Highly active catalysts (desulfurizing adsorbent, reforming catalyst, CO shift catalyst, CO removal catalyst) and the various burners were developed and evaluated in this study. The performance of the developed catalysts and the commercial ones was similar. 1 kW, 5 kW class fuel processor systems using the developed catalyst and burner showed efficiency of 75 %(LHV, for LNG). The start-up time of the 1 kW class fuel processor was less than 50 minutes and its volume including insulation was about 30 l. The start-up time of 3 kW and 5 kW class fuel processors with the volume of 90 l and 150 l, respectively, was about 60 minutes. In the case of LPG fuel, efficiency, volume and start-up time of 1kW class fuel processor showed 73 %(LHV), < 60 l and < 60 min, respectively. Advanced fuel processor showed more highly efficiency and shorter start-up time due to the improvement of heat exchanger and operating method. 1 kW and 3 kW class fuel processors have been evaluated for reliability and durability including with on/off test of developed catalysts and burner.

  • PDF

Development and Performance Test of SOFC Co-generation System for RPG (SOFC를 이용한 가정용 열병합 발전시스템 개발 및 성능시험)

  • Lee, Tae-hee;Choi, Jin-Hyeok;Park, Tae-Sung;Choi, Ho-Yun;Yoo, Young-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.361-364
    • /
    • 2009
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 cells with $10{\times}10cm^2$ area and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water. Recently KEPRI developed stacks using $15{\times}15cm^2$ cells and tested them. KEPRI will develop a 5 kW class CHP system using $15{\times}15cm^2$ stacks by 2010.

  • PDF

A Study of Surface Discharge Characteristics for Dew-Point of Dry-Air and Materials or Shapes of Solid Insulator in Quasi-Uniform Field (준평등전계에서의 Dry-Air 노점과 고체절연물 재질 및 형상에 따른 연면방전 특성 연구)

  • Min, Gyeong-Jun;Kang, Byoung-Chil;Lim, Dong-Young;Lee, Kwang-Sik;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • This study investigates the surface discharge characteristics of solid insulators by varying their materials, their shapes, and the dew-point of dry-air. The methodology of this study is that a quasi-uniform field is first applied to a test chamber. Then, the chamber is filled with dry-air as an insulation gas which pressure is varied from 1 to 6atm while applying an AC voltage to the chamber. The used solid insulators are teflon, polycarbonate, and bakelite. As the dew-point is lower and the pressure of dry-air is higher, the flashover voltage of all solid insulators increases more. When each characteristic of the solid insulators is compared under the same gas pressure, the flashover voltage of teflon is the highest. Then, the flashover voltage of polycarbonate is higher than that of bakelite. Moreover, it is observed that the flashover voltage increases as the diameter and the thickness of each solid insulator become larger and thicker, respectively. However, the thickness of the solid insulators is more critical for increasing the flashover voltage than their diameter.

Fusing Time Characteristics Analysis of Cable according to Temperature and Insulator (온도 및 절연체에 따른 케이블의 단선시간 특성 해석)

  • Kim, Ju-Hee;Kang, Sin-Dong;Kim, Jae-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.15-20
    • /
    • 2018
  • This paper describes the fusing time characteristics of Light PVC Sheathed Circular Cord(VCTF) and Tray Frame Retardant(TFR) cables according to increased temperature under over current condition. The experimental equation will be used to determine the validity and reliability of the test results. The over current flowed 3, 5 and 10 times higher than the amount of allowable current using DC power supply with DAQ(Data Acquisition) measurement system. An infrared radiation heater, which was controlled by a variable AC auto transformer, was used to increase the temperature from room temperature to 50, 100 and 150 degrees Celsius. First, two type of cables were analyzed those with different cross-sectional areas with in the same structure and those with different structures with in the same cross-sectional areas. Then, it was determined how fusing time had been influenced according to the cross-sectional areas and different structures, respectively. The cable resistance was increased by joule heating according to increasing temperature. Therefore, the allowable current of cable is decreased. Finally, the fusing time of the cable was decreased due to increased temperatures at current flow, which were 3 times the amount of allowable current. The instantaneous breakdown was observed when current flow was 5 and 10 times over the amount of allowable current. The fusing time is directly affected by the structure of cable insulation.

The Energy Analysis and Evaluation of the NEO-Hanok

  • Han, Sang Hee;Park, So Yeon;Park, Hyo Soon
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.77-86
    • /
    • 2014
  • Plenty of efforts have been made in the traditional architecture of Korea, Hanok, to develop various elements such as restoration, the introduction of new design, and energy-saving while systemic setups on standard and evaluation of eco-friendly energy design of Hanok are lacking. If we evaluate energy performance based on current standards without reflecting unique features of Hanok on the system, Hanok will be included in the very low grade among the residential buildings being included in the approval system of eco-friendly architecture or the unique features will be modified and the burden of increased construction cost. Therefore, this study is to prepare the basic reference for the introductory evaluation system by evaluating the energy performance level of NEO-Hanok based on the current building energy rating system. The result for NEO-Hanok based on the building energy rating system, we propose the rating standard with scorecard elements of NEO-Hanok by considering the necessity of identity and standard for NEO-Hanok. As a result of infiltration test to check the tightness, it was measured as 10.81 times/h (50 ACH). As we switch from the main insulation for the wall from the glass wool 64k(0.035W/mk) to rigid polyurethane foam first class first unit (0.024W/mk), the result was slightly increased from the first demand quantity rating yield $249.8kWh/m^2{\cdot}yr$ to $235.0kWh/m^2{\cdot}yr$. Current certificate system is focused more on the heating load than the cooling load, it is disadvantageous for Hanok, which has less cooling energy consumption in summer. The rating result from the target building study is level 4.

A Study of Parametric Effects on the Thermal Performance of Flat-Plate Liquid-Heating Solar Collectors (평판형 액체식 집열기 의 각종 변수 가 집열기 의 열성능 에 미치는 영향)

  • 전문헌;윤석범;추교명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.145-153
    • /
    • 1984
  • In the present work, a computer simulation is performed employing Hottel-Whillier-Bliss model for thermal performance of solar collectors. The major collector parameters examined in the computer simulation are: number of transparent glass covers(N), thermal emissivity of the absorbing plate surface (.epsilon.$_{P}$), absorptivity of absorber plate (.alpha.$_{p}$), flow rate per unit area of collector (G), $L_{b}$ / $k_{b}$ of insulation material, tilt angle of collector (S), and solar insolation(I). By varying numerical values of the major collector parameters around their typical values, the corresponding variations in thermal efficiency curves are examined. In addition, an experimental investigation has been carried out with a slightly modified KAIST collector test loop under a real sun condition in order to compare with the simulation results, examine the applicability of the mathematical model of the collector thermal performance, and study the effect of variation of flow rate (G) on thermal efficiency and the range of optimum flow rate.e.

The Relationship between Grain Design and Non-uniform Ablation of Solid Rocket Insulation (추진제 형상과 연소관 단열재 불균일 삭마의 관계)

  • Kim, Jeongjin;Lee, Jungseob;Jin, Jungkun;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.28-34
    • /
    • 2020
  • In order to relieve the burden of the rear ablative material, the combustion test of the solid rocket motor with the forward deployed multi-pin grain design was successfully performed twice. However, after disassembling the solid rocket motor, a non-uniform ablation pattern was found in the rear ablative material. Periodic repetition of local and regional ablation was measured precisely. Two-dimensional flow and eddy flow, created by the uneven main-pin flow hitting the rear ablative material, were identified as the cause of non-uniform ablation. In addition. when the rear pins were removed, the possibility of securing the soundness of the rear ablative material was confirmed as the average flow velocity and the standard deviation were lowered.