• Title/Summary/Keyword: Insulation Design

Search Result 894, Processing Time 0.027 seconds

Fundamental Study on Estimating Compressive Strength and Physical Characteristic of Heat insulation Lightweight Mortar With Foam Agent (기포제 혼입 단열형 경량모르타르의 물리적 특성 및 압축강도 추정에 관한 기초적 연구)

  • Min, Tae-Beom;Woo, Young-Je;Lee, han-Seung
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.89-96
    • /
    • 2010
  • In comparison with ordinary or heavy-weight concrete, light-weight air void concrete has the good aspects in optimizing super tall structure systems for the process of design considering wind load and seismic load by lightening total dead load of buildings and reducing natural resources used. Light-weight air void concrete has excellent properties of heat and sound insulating due to its high amount porosity of air voids. So, it has been used as partition walls and the floor of Ondol which is the traditional Korean floor heating system. Under the condition of which the supply of light-weight aggregates are limited, the development of light-weight concrete using air voids is highly required in the aspects of reduced manufacturing prices and mass production. In this study, we investigated the physical properties and thermal behaviors of specimens that applied different mixing ratios of foaming agent to evaluate the possibility of use in the structural elements. We proposed the estimating equation for compressive strength of each mix having different ratio of foaming agent. We also confirmed that the density of cement matrix is decreased as the mixing amount of foaming agent increase up to 0.6% of foaming agent mixing ratio which was observed by SEM. Based on porosity and compressive strength of control mortar without foaming agent, we built the estimating equations of compressive strength for mortars with foaming agent. The upper limit of use in foaming agent is about 0.6% of the binder amount. Each air void is independent, and size of voids range from 50 to $100{\mu}m$.

An application to HVAC control system based on occupants' thermal response in office buildings (공조제어 적용을 위한 재실자 온열반응 데이터의 유효성 분석에 관한 연구)

  • Han, Hyesim;Kim, Jonghun;Jeong, Hakgeun;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.111-117
    • /
    • 2014
  • In South Korea, the government has recently enforced regulations associated with buildings. Temperature restriction in indoor environment is one of the common ways of energy reduction in order not to dissipate heating and cooling energy; however the people who are in restricted temperature feels uncomfortable. Furthermore, occupants cannot feel the same thermal sensation even they are in the same place. For the reason, occupants should express their thermal sensation and HVAC system should be able to apply their demand. It is proved by an adaptive principle. The adaptive model means that people react in ways which tend to restore their comfort, when change occurs such as to produce discomfort. In order to design HVAC control strategies based on adaptive model, we designated an existing office building as a reference building to gather data from actual field. Furthermore, we gathered occupants' thermal sensation and clothing insulation in real-time. We filtered the data with Kalman's filter method. The data was reasonable when there is an alarm messages for asking questionnaire. The response ratio were different in occupants' thermal condition. In conclusion, the filtered occupants' thermal sensation can be used as a real time HVAC control and input value of HVAC control.

The Compressive Strength of Thin-Walled Cold-Formed Steel Studs with Slits in the Web (복부에 슬릿이 있는 박판냉간성형형강 스터드의 압축강도)

  • Kwon, Young-Bong;Soe, Eung-Kyu;Lim, Duk-Man;Kim, Gap-Deuk;Kwon, In-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.189-197
    • /
    • 2012
  • The cold-formed steel stud, which has been used as a load-bearing member of wall panels for steel houses, poses a significant problem in insulation due to heat bridging of the web. Therefore, some additional thermal insulating materials are required. In order to solve this problem, the cold-formed steel thermal stud with slits in the web was developed. However, estimating the structural strength of thermal studs is very difficult because of the arrangement of perforations. In this paper, an analytical and experimental research on thermal studs is described. Three types of studs with different length, pitch and arrangement of slits were tested to failure. A simple design approach was proposed based on the test results. The proposed method adopted the direct strength method, based on the elastic local and distortional buckling stress of plain studs with equivalent thickness in the web instead of thermal studs. The predictions using the proposed method were compared with test results for verification and the adequacy of the proposed method was confirmed.

Design and Self-sustainable Operation of 1 kW SOFC System (1kW 고체산화물 연료전지(SOFC) 시스템 설계 및 자열운전)

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Young-Sung;Nam, Suk-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • KEPRI (Korea Electric Power Research Institute) has studied planar type solid oxide fuel cell (SOFC) stacks using anode-supported cells and kW class co-generation systems for residential power generation. In this work, a 1 kW SOFC system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a SOFC stack made up of 48 cells, a fuel reformer, a catalytic combustor, and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation in that system. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. When the 1 kW SOFC stack was tested using hydrogen at $750^{\circ}C$, the stack power was about $1.2\;kW_e$ at 30 A and $1.6\;kW_e$ at 50 A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_e$ with hydrogen and $1.2\;kW_e$ with city gas respectively. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water.

Convergent Investigation with Internal Flow Analysis According to the Opening and Closing of Vehicle Window (차량 창문 개폐에 따른 내부에서의 유동 해석으로의 융합적 고찰)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.155-160
    • /
    • 2020
  • In this study, the pleasant driving environment of the driver and passenger in the summer was investigated through the internal flow analysis of air due to the opening and closing of the car windows. The conditions on the entrance of the air conditioner with the opening and closing status of vehicle window were applied to the flow analysis by taking into consideration the actual driving environment. The automotive air conditioning outlet, the seat and the inside of car were modeled. As the air flow inside the car was analyzed, the air flow configuration and the temperature distribution were examined. In this analysis, the results were taken in consideration of only the effects of internal air and the opening and closing of window, assuming the interior of the vehicle as insulation. The analysis of each condition shows that these models maintain a pleasant environment. It is seen that this analysis result on the internal flow analysis according to the opening and closing of vehicle window can be applied by converging with the field of design.

The Development of a Retirement Home Model with Emphasis on Clothing, Nutrition, Housing, and Psychological Dimension (노인의 의.식.주생활 및 심리적 적응을 위한 이상적 모델개발 연구 -양로원을 중심으로-)

  • 윤복자
    • Journal of the Korean Home Economics Association
    • /
    • v.27 no.4
    • /
    • pp.167-191
    • /
    • 1989
  • The present study was conducted to devlop and appropriate retirement home model for the elderly in terms of clothing and textiles; nutrition, health, and foodservice; housing and environment; and psychological adaptation. Specifically, the purposes of the study were: 1) to provide basic guidelines for clothing by comparing the clothing behavior of the elderly living in the retirement home and those living in their own homes with family, 2) to provide basic guidelines for balanced diet and effective foodservice, 3) to develop an ideal life space and facilities, and 4) to assess the psychological characteristics of the elderly. Questionnaires, observation, experimental method, and survey of literature were used for the study. Clothing behavior showed that the elderly were much concerned about clothing, and they preferred comfortable as well as fashionable designs. The elderly in the retirement homes complained of a lack of quantity and variety in clothing. They preferred natural fiber rather than blended fabrics. Flame resistance, thermal insulation, and flexibility of textile fabrics were found to be prime considerations in manufacturing and selecting clothing materials for the elderly. The health status of the surveyed elderly was generally good, but some poor eating habits were observed. Dietary nutrients intakes were generally sufficient, but several nutrients intakes were insufficient. The level of equipment in the kitchens of the institutions was low. Furthermore, the employment rate of dietitians in institutional settings was extremely low. This resulted in a lack of systematic foodservice management. Residents in the institution were generally satisfied with present life space and facilities but this was mainly because of abandonment, adaptation, and past experience. Optimal allocation of residents per bedroom and an adequate design for storage, bathroom, utility room, and dining room were recommended. The comparison of psychological status of the elderly living at home was more stable than those living in an institution. The emotional state of the elderly living in the institution was characterized by loneliness; they did not have close interpersonal relationships or future plans. An appropriate model for the elderly was developed on the basis of these findings.

  • PDF

Capacitive Voltage Divide for a Pulsed High-Voltage Measurement (펄스형 고전압 측정용 용량성 분압기)

  • Jang Sung-Duck;Son Yoon-Kyoo;Kwon Sei-Jin;Oh Jong-Seok;Cho Moo-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.2
    • /
    • pp.63-68
    • /
    • 2005
  • Total 12 units of high power klystron-modulator systems as microwave source are under operation for 2.5 GeV electron linear accelerator in Pohang Light Source (PLS) linac. The klystron-modulator system has an important role for the stable operation to improve an availability statistics of overall system performance of klystron-modulator system. RF power and beam power of klystron are precisely measured for the effective control of electron beam. A precise measurement and measurement equipment with good response characteristics are demanded for this. Input power of klystron is calculated from the applied voltage and the current on its cathode. Tiny measurement error severely effects RF output power value of klystron. Therefore, special care is needed to measure precise beam voltage. Capacitive voltage divider (CVD), which divides input voltage as capacitance ratio, is intended for the measurement of a beam voltage of 400 kV generated from the klystron-modulator system. Main parameter to determine standard capacitance in the high arm of CVD is dielectric constant of insulation oil. Therefore CVD should be designed to have a minimum capacitance variation due to voltage, frequency and temperature in the measurement range. This paper will be present and discuss the design concept and analysis of capacitive voltage divider for a pulsed high-voltage measurement, and the empirical relations between capacitance effects and oil temperature variation.

Design and Experimental Evaluation of a Robust Force Controller for a 6-Link Electro-Hydraulic Manipulator via H$_{\infty}$ Control Theory

  • Ahn, Kyoung-Kwan;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.999-1010
    • /
    • 2003
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. This maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulators because hydraulic manipulators have the advantage of electric insulation and power/mass density. Meanwhile an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this paper, the robust force control of a 6-link electro-hydraulic manipulator system used in the real maintenance task of active electric lines is examined in detail. A nominal model for the system is obtained from experimental frequency responses of the system, and the deviation of the manipulator system from the nominal model is derived by a multiplicative uncertainty. Robust disturbance observers for force control are designed using this information in an H$\_$$\infty$/ framework, and implemented on the two different setups. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved even if the stiffness of environment and the shape of wall change.

Functional Underwear Development for Elderly Woman from 3D Body Model applying PCM treatment (PCM 가공과 3차원 인체 모델링 기술을 적용한 노년 여성용 기능성 언더웨어 설계)

  • Choi, Sin-Ae;Kim, Tae-gyou;Park, Youong-Min;Shin, Ji-Young;Park, Soonjee
    • Fashion & Textile Research Journal
    • /
    • v.18 no.4
    • /
    • pp.457-467
    • /
    • 2016
  • This study aimed to develop functional underwear for elderly women in their sixties in terms of good fit, wear comfort and body temperature regulation. To satisfy elderly women's physical and metabolical needs, an automatic temperature control system via PCM treatment was applied. Underwear pattern was produced by producing body surface replica, which was derived from 3D body parametric model. Differential ratios of outline length and area between 3D surface and 2D plane were 1.4% and 0.5%, respectively. The reduction rate was determined as 10% through the expert's evaluation. PCM treated fabric showed higher Q-max, meaning that it can facilitate the thermal transition in hot situation. Moreover, it also showed higher insulation to preserve heat and keep warm microclimate in a cold weather. Heat distribution measurements on various body parts revealed that the temperature after PCM treatment was significantly higher. The clothing pressure after 10% pattern reduction showed higher before reduction, at the same time, even lower than the comfort clothing pressure range of $5{\sim}10gf/cm^2$, implying that experimental garment of this research is acceptable in terms of clothing pressure. Evaluation results on the comfort to move in various motions proved that adequate clothing pressure improved the wear comfort in various motions.

Effect of lamination pressing force for stiffness variation of a laminated rotor (적층로터의 강성 변경을 위한 적층판 압착력의 영향)

  • 김영춘;박희주;김경웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.788-792
    • /
    • 2003
  • Rotating machines are widely used in industrial world and especially motor and generator take up much part of it. As for this kind of motor and generator, electrical loss due to eddy current is the very important factor and that is also a primary factor causes heat generation. To solve this kind of problem like the above. insulated laminating silicon steel sheet is used to prevent eddy current effect. Laminated rotor is widely used as rotating shaft of motor and generator. Due to that, electrical loss and heat problem can be solved but designer meets another problem. In general. most of the motor and generator can be normally operated under 3,600 rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed, large scale and high precision in industrial world. The critical speed can be determined from the inertia and stillness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape, lamination material and shape, insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method and design criteria will be presented for motor & generator designer, who can apply the result of numerical analysis with equivalent diameter scheme with ease.

  • PDF