• Title/Summary/Keyword: Insulating polymers

Search Result 20, Processing Time 0.024 seconds

Properties and Trends in Conductive and Insulating Polymers - A Review (전도성 고분자와 절연성 고분자의 특성 및 동향)

  • Ayoung Jang;Jisu Lee;Sang Oh Lee;Jaewoong Lee
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.274-283
    • /
    • 2023
  • Conductive polymers are polymers that conduct electricity like metal conductors. Unlike typical organic polymers, they are polymers that have the electrical, magnetic, and optical properties of metals or semiconductors. For Example, these conductive polymers include Polypyrrole (PPy), Polyaniline (PANI), and Polythiophene (PT). On the other hand, Insulating polymers do not conduct electricity well while providing insulation, which is the opposite of conductivity. With the exception of conductive polymers, most polymers are non-conductors. Insulating polymers include polyimide (PI), polystyrene (PS), and poly(vinyl alcohol) (PVOH, PVA, or PVAl). Although many different polymers exist, we have simply illustrated the properties and recent developments of conductive and insulating polymers, which have opposite properties.

Low Dielectric Constant Polymeric Materials for Microelectronics Applications (마이크로전자 응용에서의 저유전율 고분자 재료)

  • 이호영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.57-67
    • /
    • 2002
  • Increased signal speed can be obtained in three ways: changing the layout and/or the ratio of the width to thickness of the metal lines, decreasing the specific resistance of the interconnect metal, and decreasing the dielectric constant of the insulating material (intermetal dielectric). Further advancement cannot be expected from changing layout or decreasing specific resistance. The only alternative is to use an insulating material with a lower dielectric constant than other ones used presently. A large variety of polymers has been proposed for use as materials with low dielectric constants for applications in microelectronics. In this review, the properties of selected polymers as well as various fabrication methods for polymer thin films are discussed. Based on the properties described so far, and the requirements for applications as intermetal dielectric material, the possibilities for further developments also are discussed.

  • PDF

Charge Carrier Behaviour of Metal-Polymer Interface (금속-고분자 계면에서의 전하의 거동)

  • Yun, Ju-Ho;Choi, Yong-Sung;Ahn, Seong-Soo;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.373-374
    • /
    • 2008
  • Insulating polymers and their composites have been widely used in various electric apparatus or cables. Recently, the effects of interfaces (metal/insulator or insulator/insulator interfaces) on electrical insulation have attracted much attention. However, interfacial phenomena in actual insulation systems and their physical backgrounds are not well understood yet. In this paper, the behaviour of charge carriers near the metal/polymer interface and its effects on conduction and breakdown phenomena are discussed. The metal/polymer interface strongly affects carrier injection, space charge formation and breakdown phenomena. Based on their experimental results, the physical backgrounds of the interfacial phenomena are explained.

  • PDF

SURFACE POTENTIAL DISTRIBUTION ON POLYMER INSULATORS

  • Kitani, Isamu
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.17-21
    • /
    • 1998
  • The surface potential distribution on insulating polymers was measured by scanning of the probe of an electrostatic voltmeter. The measurements were done for two measured by scanning of the probe of an electrostatis voltmeter. The measurements were done for two cases. In the first case, it was measured on the free surface of insulating films which had been inserted between plane electodes after the removal of the upper brass disk electrode. In the second case, we measured the charging region between a circular and its opposing concentric ring electrodes after the removal of dc ramp voltage in air and nitrogen gas.

  • PDF

Influence of Partial Discharge Properties due to Void in Cable Joint Parts (케이블 접속재 부분방전 특성에 미치는 보이드의 영향)

  • 신종열;홍진웅
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.69-74
    • /
    • 2003
  • To investigate the partial discharge and electric field distribution in cable joint parts, we measured the partial discharge and electric field in specimen. The specimens which cross-linked polyethylene(XLPE) and ethylene propylene diene ethylene(EPDM) are used to insulating material for underground cable md cable jointing parts. The polymers are used to insulating material in switchgear which is a kind of transformer equipment and in ultra-high voltage cable. Its using is increasing gradually, the electrical insulation properties are not only excellent but also mechanical property is excellent. And because it is possible to be made void of several type in insulator while it is produced, which the electrical field distribution is changed by void, it has a critical influence to insulator performance. The underground cable is connecting by the jointing material, insulating breakdown and the electric ageing which are caused by several mixing impurity and the damage of cable insulator layer, which reduced the life of cable while intermediate joint kit is connected. Therefore, the computer simulation is used to estimating insulator performance, XLPE is used to the insulating material of ultra-high voltage cable and EPDM is used to insulator layer in joint material kit, and which are produced as specimen. And it is analyzed the electric field concentrating distribution and partial discharge by modeling of computer simulation in void and cable joint kit.

Synthesis and Physical Property of Multi-Functional Siloxane Protective Coating Materials Applicable for Electronic Components

  • Kim, Cheol Hyun;Cho, Hyeon Mo;Lee, Myong Euy
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1665-1669
    • /
    • 2014
  • Four multialkoxy-functionalized siloxane base-polymers (BP-1~4) were synthesized through either hydrosilylation or condensation reactions in order to prepare multi-networked siloxane polymers having appropriate physical properties for protective coating in fabrications of electronics. Formulations of 4 base-polymers gave coating materials A and B. Product A showed well-controlled flowing and leveling properties, and product A-2 was successfully applied to protective insulating coating for junction areas of connectors and chips in PDP controller. Tack free time, extrusion rate, dielectric breakdown voltage, hardness, thermal stability, water resistance and flame resistance of products A and B were examined.

Fabrication of Organic Thin-Film Transistor Using Vapor Deposition Polymerization Method (Vapor Deposition Polymerization 방법을 이용한 유기 박막 트렌지스터의 제작)

  • 표상우;김준호;김정수;심재훈;김영관
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.190-193
    • /
    • 2002
  • The processing technology of organic thin-film transistors (Ons) performances have improved fur the last decade. Gate insulator layer has generally used inorganic layer, such as silicon oxide which has properties of a low electrical conductivity and a high breakdown field. However, inorganic insulating layers, which are formed at high temperature, may affect other layers termed on a substrate through preceding processes. On the other hand, organic insulating layers, which are formed at low temperature, dose not affect pre-process. Known wet-processing methods for fabricating organic insulating layers include a spin coating, dipping and Langmuir-Blodgett film processes. In this paper, we propose the new dry-processing method of organic gate dielectric film in field-effect transistors. Vapor deposition polymerization (VDP) that is mainly used to the conducting polymers is introduced to form the gate dielectric. This method is appropriate to mass production in various end-user applications, for example, flat panel displays, because it has the advantages of shadow mask patterning and in-situ dry process with flexible low-cost large area displays. Also we fabricated four by four active pixels with all-organic thin-film transistors and phosphorescent organic light emitting devices.

  • PDF

The Radiation Resistance Evaluation of Electrically Insulating Polymers

  • Lee, Dong-Hoon;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Im, Don-Sun;Kim, Ki-Yup;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.237-242
    • /
    • 2011
  • In this research, the radiation resistance of ethylene propylene rubber (EPR) and chlorosulfonated polyethylene (CSPE) which can be used as a insulating materials of for electrical cable in the nuclear power plant were investigated. EPR and CSPE were irradiated by ${\gamma}$-ray at various doses ranging from 50 to 500 kGy at room temperature in air. The irradiated EPR and CSPE was investigated in terms of activation energy, mechanical properties, and oxidation stability. The experimental results revealed that CSPE exhibited the higher radiation resistance in comparison to that of EPR.

A Study on the Electrification Phenomena Affecting Industrial Disaster (산업재해에 미치는 대전현상에 관한 연구)

  • 육재호;안병준
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.101-106
    • /
    • 1993
  • The streaming current of insulating oil increases with increasing oil velocity and oil amount, A contact potential difference as an energetic state exits in the polymer thin film, both sides of which are contacted by two different metals having different work functions. Accordingly, the potential difference may be a cause for the short circuited transient current flowing through the external circuit. The polymers are electrificated as the electric field Is supplied, and the currents flow with increasing temperature.

  • PDF

Comparison of the Characteristics of Metal Membrane Pressure Sensors Depending on the Shape of the Piezoresistive Patterns (금속 멤브레인 압력 센서에서 압저항체 패턴 형태에 따른 특성 비교)

  • Jun Park;Chang-Kyu Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.173-178
    • /
    • 2024
  • Development of pressure sensors for harsh environments with high pressure, humidity, and temperature is essential for many applications in the aerospace, marine, and automobile industries. However, existing materials such as polymers, adhesives, and semiconductors are not suitable for these conditions and require materials that are less sensitive to the external environment. This study proposed a pressure sensor that could withstand harsh environments and had high durability and precision. The sensor comprised a piezoresistor pattern and an insulating film directly formed on a stainless-steel membrane. To achieve the highest sensitivity, a pattern design method was proposed that considered the stress distribution in a circular membrane using finite element analysis. The manufacturing process involved depositing and etching a dielectric insulating film and metal piezoresistive material, resulting in a device with high linearity and slight hysteresis in the range of a maximum of 40 atm. The simplicity and effectiveness of this sensor render it a promising candidate for various applications in extreme environments.