• Title/Summary/Keyword: Insulating Structure

Search Result 295, Processing Time 0.03 seconds

Improvement of Interfacial Performances on Insulating and Semi-conducting Silicone Polymer Joint by Plasma-treatment

  • Lee, Ki-Taek;Huh, Chang-Su
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.16-20
    • /
    • 2006
  • In this paper, we investigated the effects of short-term oxygen plasma treatment of semiconducting silicone layer to improve interfacial performances in joints prepared with a insulating silicone materials. Surface characterizations were assessed using contact angle measurement and x-ray photoelectron spectroscopy (XPS), and then adhesion level and electrical performance were evaluated through T-peel tests and electrical breakdown voltage tests of treated semi-conductive and insulating joints. Plasma exposure mainly increased the polar component of surface energy from $0.21\;dyne/cm^2$ to $47\;dyne/cm^2$ with increasing plasma treatment time and then leveled off. Based on XPS analysis, the surface modification can be mainly ascribed to the creation of chemically active functional groups such as C-O, C=O and COH on semi-conductive silicone surface. This oxidized rubber layer is inorganic silica-like structure of Si bound with three to four oxygen atoms ($SiO_x,\;x=3{\sim}4$). The oxygen plasma treatment produces an increase in joint strength that is maximum for 10 min treatment. However, due to brittle property of this oxidized layer, the highly oxidized layer from too much extended treatment could be act as a weak point, decreasing the adhesion strength. In addition, electrical breakdown level of joints with adequate plasma treatment was increased by about $10\;\%$ with model samples of joints prepared with a semi-conducting/ insulating silicone polymer after applied to interface.

A Study on the Current Status of Building Envelope in detached houses of near Local Cities - with Staff of Small-sized Architectural Design Firms in Gwangju and Jeonnam - (지방도시근교 단독주택의 외피구성 현황에 관한 연구 - 광주광역시/전남 소규모 건축설계사무소 실무자를 대상으로 -)

  • Park, Sung-Jin;Lee, Chang-Jae
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.53-60
    • /
    • 2013
  • This study examined the building envelope structure used in small housings near urban area which have not good energy source in relation to the application of passive design for energy saving of small-sized architectural design firms in local cities and aimed to provide the basic materials of future design direction of designers and housing owners by analyzing economy of a project in order to know the amount of energy saving and additional expenses depending on the building envelope pattern. As a result of comparing and examining the energy saving cost from the period of use compared to investment by the thickness of insulating materials based on building envelope pattern for energy saving, it was found that the thicker the insulating materials are, the more energy saving amount is. While the current bead-type insulating materials have short payback period due to low initial investment, extruded insulating materials show the difference of five years compared to bead-type insulation because of its high initial investment.

Dependencies of Dielectric Properties on Temperature and Frequency in PET films with interfaces (계면을 갖는 PET 필름의 유전특성의 온도 및 주파수 의존성)

  • Lee, Chang-Hoon;Lee, Jong-Bok;Lee, Dong-Young;Kang, Moo-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.938-940
    • /
    • 1998
  • In order to improve insulating character and ability of insulating system of power apparatus, the interfacial and complex structure is widely used. However, the interface or complex structure of insulation materials is reported as a weak point which causes breakdown. As the interface of insulation system degrades its electrical property and eventually causes a failure, the datailed phenomenon analysis is reported. The object of this paper is to evaluate dielectric property of PET film with the interface. The $tan{\delta}$ increased with the existence of semiconducting layer and showed prominent decrease as a function of temperature. Also, the $tan{\delta}$ showed prominent increase as a function of frequency. The dielectric properties of interfacial were affected by the interface characteristics.

  • PDF

The Effect of Geometrical Structure on the Heat Transfer of Insulating Nonwovens: A Comparison of Single and Double Layered Nonwovens (보온용 부직포의 구조적 특성이 열전달에 미치는 영향: 단층구조와 이층구조 부직포의 비교)

  • Kim, Hee-Sook
    • Korean Journal of Human Ecology
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 1998
  • The purpose of this study was to investigate the effect of geometrical structure on the heat transfer of insulating nonwovens. Commercially available single and double layered polyester nonwovens have used. Thermal conductivity, k and thermal conductance, h were measured by using a constant temperature sandwich type device at dry and wet state. The results obtained were as follows: 1. Double layered nonwovens showed slightly lower thermal conductance and higher warmability than single layered nonwovens. 2. As moisture regain increased, double layered nonwovens showed higher increasing rate of thermal conductivity than single layered nonwovens.

  • PDF

Mechanical Properties of the Laminated Glass Fiber-Reinforced Plastic Composites for Electromagnet Structure System (전자석 구조물용 적층 유리섬유강화 복합재료의 기계적 특성)

  • Park, Han Ju;Kim, Hak Kun;Song, Jun Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.589-595
    • /
    • 2011
  • Laminated glass fiber-reinforced plastic (GFRP) composites were applied to an insulating structure of a magnet system for a nuclear fusion device. Decreased inter-laminar strength by a strong repulsive force between coils which is induced a problem of structural integrity in laminated GFRPs. Therefore, it is important to investigate the inter-laminar characteristics of laminated GFRP composites in order to assure more reliable design and better structural integrity. Three types of the laminated GFRP composites using a high voltage insulating materials were fabricated according to each molding process. To evaluate the grade of the fabricated composites, mechanical tests, such as hardness, tensile and compressive tests,were carried out. The autoclave molding composites satisfied almost of the mechanical properties reguested at the G10 class standard, but the vacuum impregnation (VPI) and Prepreg composites did not.

Color manipulation of silica aerogel by copper incorporation during sol-gel process

  • Lee, Sang-Seok;Park, Il-Kyu
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.30-34
    • /
    • 2019
  • Copper (Cu)-incorporated silica aerogel was synthesized by a sol-gel process with two-step drying process for color modification. The microstructure of the silica aerogel was not affected significantly by the Cu concentration and an amorphous structure was maintained without any crystalline impurity phases. The textural properties of the silica aerogels investigated by using N2 adsorption-desorption isotherms exhibited the typical features of mesoporous materials. The pore size and porosity were not changed significantly even with the incorporation of Cu up to 1.5 M, which indicates negligible variation of thermal insulating properties. However, the color of the aerogel changed from white and light greenish to dark greenish with increasing Cu content. The color change of the silica aerogel was due to the modification of the electron energy band structure of silica by the Cu atomic levels. Therefore, the color of the silica aerogel powders could be manipulated by incorporating Cu without degrading the thermal insulating properties.

An Experimental Study on the Improvement Floor Impact Sound Insulation by Ceiling Structure in Apartment Houses (천장구조를 이용한 공동주택 바닥충격음 차단성능 개선에 관한 실험적 연구)

  • Baek, Eun-Sun
    • KIEAE Journal
    • /
    • v.7 no.1
    • /
    • pp.95-100
    • /
    • 2007
  • In apartment houses, said to be similar to a typical housing form, every household share the walls and floors. Many problems inevitably accompany such as an arrangement, as noise and vibration are shared among households. When investigating the percentage of apartment resident's dissatisfaction with housing environments, discontent due to noise ranks the highest. Among many different kinds of noises, noise such as floor crashing sounds show the highest indication rate in the residents' comparison of discontent. Therefore, it is the practice of insulating against noises such as floor crashing sounds that improves the apartment house environments. The factors influencing the floor impact sound insulation include floor finishing materials, shock absorbing floors (slabs included), and ceiling structures. The ceilings of the apartment houses, currently built in Korea, are set up with lower parts of slabs and paper finishing, or with double floors for protecting against floor impact sounds in order to improve the sound insulating performance. The most common the method of ceiling structure construction consists of 'wood boarded frames +Gypsum boards + ceiling papers', which is called the wood boarded frame method. This study aimed to measures and evaluates floor impact sound insulation by which the ceiling space are widened according to suppression system is added in apartment house ceiling structure.

Investigation of Buffer Traps in AlGaN/GaN Heterostructure Field-Effect Transistors Using a Simple Test Structure

  • Jang, Seung Yup;Shin, Jong-Hoon;Hwang, Eu Jin;Choi, Hyo-Seung;Jeong, Hun;Song, Sang-Hun;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.478-483
    • /
    • 2014
  • We propose a new method which can extract the information about the electronic traps in the semi-insulating GaN buffer of AlGaN/GaN heterostructure field-effect transistors (HFETs) using a simple test structure. The proposed method has a merit in the easiness of fabricating the test structure. Moreover, the electric fields inside the test structure are very similar to those inside the actual transistor, so that we can extract the information of bulk traps which directly affect the current collapse behaviors of AlGaN/GaN HEFTs. By applying the proposed method to the GaN buffer structures with various unintentionally doped GaN channel thicknesses, we conclude that the incorporated carbon into the GaN back barrier layer is the dominant origin of the bulk trap which affects the current collapse behaviors of AlGaN/GaN HEFTs.

Epoxy-Based Siloxane/Silica Composites for Electronic Packaging by Composition and Molecular Structure of Siloxane, and Analysis of Changes in Properties (조성 및 실록산 분자 구조에 따른 전자 패키징용 에폭시 기반 실록산/실리카 복합체의 물성 변화 분석)

  • Junho Jang;Dong Jun Kang;Hyeon-Gyun Im
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.346-355
    • /
    • 2023
  • Epoxy-based composites find extensive application in electronic packaging due to their excellent processability and insulation properties. However, conventional epoxy-based polymers exhibit limitations in terms of thermal properties and insulation performance. In this study, we develop epoxy-based siloxane/silica composites that enhance the thermal, mechanical, and insulating properties of epoxy resins. This is achieved by employing a sol-gel-synthesized siloxane hybrid and spherical fused silica particles. Herein, we fabricate two types of epoxy-based siloxane/silica composites with different siloxane molecular structures (branched and linear siloxane networks) and investigate the changes in their properties for different compositions (with or without silica particles) and siloxane structures. The presence of a branched siloxane structure results in hardness and low insulating properties, while a linear siloxane structure yields softness and highly insulating properties. Both types of epoxy-based siloxane/silica composites exhibit high thermal stability and low thermal expansion. These properties are considerably improved by incorporating silica particles. We expect that our developed epoxy-based composites to hold significant potential as advanced electronic packaging materials, offering high-performance and robustness.

Band Electronic Structure Study of Compound $(ET)_2ICl_2$ in Two Structural Modifications

  • Kang Dae Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.428-432
    • /
    • 1994
  • The crystals of ${\beta}-and\;{\beta}'-(ET)_2ICl_2$ have a modified structure of organic superconductor ${\beta}(ET)_2I_3$. These salts possess strictly different physical properties : the ${\beta}$ phase is a metal but the ${\beta}'$ phase is a semiconductor. Our band electronic structure calculations show that the ${\beta}$ phase is somewhat anisotropic 2D metal and the ${\beta}'$ phase with the 1D character in electronic structure is magnetic insulating, in good agreement with experimental indications.