• Title/Summary/Keyword: Insulating Material

Search Result 711, Processing Time 0.024 seconds

Characterization of Water Vapor Transmission & Dielectric Breakdown in Insulation Materials for Jacket Compound (자켓 컴팍운드용 절연재의 수증기투과 및 절연파괴 특성)

  • 송재주;한재홍;송일근;한용희;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.52-56
    • /
    • 2001
  • Experiments of 2 type on insulating compounds accomplished to change PVC using in URD(Underground) power cable jacketing. one was DB(Dielectric Breakdown) test on the pure base resins and the others were WVT(Water Vapor Transmission) test on the compounds which contained C/B(Carbon Black), anti-oxidant to base resin. a kind of specimens made by pressing to resin of pellet or lump form was HDPE(High Density Polyethylene), MDPE(Medium Density Polyehylene), LDPE(Low Density Polyethylene), LLDPE(Linear Low Density Polyethylene), PVC(Polyvinyl Chloride). As a results of AC DB and WVT test, we saw that strength of Insulation was HDPE> LLDPE = MDP E> LDPE and WVT ratio was HDPE

  • PDF

A study on development of program for estimation the Lifetime of insulating materials (절연재료의 수명예측을 위한 프로그램개발에 관한 연구)

  • 박성민;배덕권;정인재;박우현;이기식;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.699-702
    • /
    • 2000
  • Today, electrical machine is being large capacitor and EHV(Extra High Voltage) of power equipment is a need of high reliability of insulating matetials. Therefore, it is a need of fixed appraisement of lifetime to used data of breakdown. This paper studied a development of the program for estimation the lifetime of insullating materials and the long-time breakdown voltage by experimentation. The estimation program is based on the "Inverse Power Law", defined V$\^$n/t is constant. After gaining the life exponent n, it is mapping the long-time breakdown voltages. On the base of life exponent, the estimation of lifetime and usefulness of the insulation systems are possible, furthermore easy calculation is possible.

  • PDF

Temperature dependence and Voltage dependence of Aramide Paper (아라미드계 절연지(Aramid paper)의 온도의존성과 전압의존성)

  • Park, Hyoung-Jun;Lee, Jong-Pil;Park, Hee-Doo;Sin, Jong-Yeol;Lee, Soo-Won;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.465-468
    • /
    • 2004
  • In this paper, the properties of temperature dependence and voltage dependence of Aramid paper were studied to understand electrical characteristics, to be regarded as the excellent insulation. Aramid paper and pressboard had being applied various motor, generator. We used to Finite Elemental Method of simulation tool, and improved optimal insulating design of insulating Aramid according to calculated those.

  • PDF

The Effect of Plasma Treatment on Surface Properties and Adhesion Characteristics of semiconductive Silicone Rubber (반도전성 실리콘 고무의 표면 특성과 접착특성에 미치는 플라즈마 처리의 영향)

  • Hwang, Sun-Mook;Hong, Joo-Il;Hwang, Cheong-Ho;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.254-255
    • /
    • 2005
  • In this work, the effects of plasma treatment on surface properties of semi conductive silicone rubber were investigated in terms of X-ray photoelectron spectroscopy(XPS). The adhesion characteristics of semiconductive-insulating interface layer of silicone rubber were studied by measuring the T-peel strengths. As a result, semiconductive silicone rubber surfaces treated with plasma discharge led to and increase in oxygen-containing functional groups, resulting in improving the degree of adhesion of the semiconductive-insulating interface layer of silicone rubber. these results are probably due to the modifications of surface functional groups or polar component of surface free energy of the semi conductive silicone rubber.

  • PDF

Properties of Foamed Concrete according to Dilution Concentrations of Animality Protein Foaming Agent (동물성 기포제의 희석농도에 따른 기포콘크리트의 특성)

  • Lim, Jeong-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.77-78
    • /
    • 2019
  • Organic insulating materials can cause fatal toxic gases when burned, which can lead to human injury. As a combustible material, the risk of fire spreading is great. Therefore, there is a need for a study on the lightweight cured body for the non-combustible inorganic insulation to replace the flammable organic insulation. This study aims to examine the properties of lightweight foamed concrete according to the dilution concentration of animal foaming agent which forms a closed void when foaming as a part of the experiment to examine the utility of the lightweight foamed concrete as an insulating material. Bubbles occupy a large volume of lightweight foam concrete and have a great influence on the properties. Therefore, the stability of the bubble is very important, and as a result of the experiment, it is determined that 3% of the smallest vesicles are prepared at the proper dilution concentration.

  • PDF

Deflection Characteristics of Permanent Formwork Using Multi-layer Insulation (다층형 단열재를 사용한 영구거푸집의 처짐 특성)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Song, Sung-Yong;Kim, Deuck Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.130-131
    • /
    • 2019
  • As part of recent low-energy policies, thermal insulation standards for buildings are being tightened every year. In addition, the conventional styrofoam insulating material has a problem that the thickness of the heat insulating material to achieve a standard heat permeability is rapidly increased. Due to the thick insulation, there is a high risk of spreading vulnerable structures such as fire due to lack of space between buildings. On the other hand, the method of using the insulation as a formwork is known to be excellent cost saving effect through the reduction of the formwork usage and the simplification of the external insulation work. In order to solve this problem, this study aims to fabricate a multi-layered insulator that combines high-performance phenolic foam insulation and styrofoam insulation and evaluate the deflection characteristics for use as formwork.

  • PDF

A Study on the Characteristics of Organic Insulating Materials Carbonized by a Leakage Current (누설전류에 의하여 탄화된 유기절연재료의 특성에 대한연구)

  • Park, Sang-Taek;Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.161-167
    • /
    • 2009
  • Organic insulating materials which are utilized as insulating materials for the low voltage show unique carbonization characteristics when they are carbonized by a leakage current. Therefore the use of the carbonization characteristics makes it possible to examine the electrical fire which is caused by a leakage current flowing on the surface of the organic insulating material. In order to understand such carbonization characteristics, in this paper, experiments have been done to carbonize typical organic insulating materials such as phenol resin, PVC, and acrylic resin, and the carbonization patterns and the IR absorption spectrum of specimens have been analyzed. According to the analysis of the carbonization patterns, the phenol resin shows the so-called 'spider-leg' carbonization pattern due to a thermosetting property. In contrast to the phenol resin, the thermoplastic property makes it difficult to observe a clear carbonization pattern to verify carbonizing causes on the surfaces of PVC and acrylic resins. In this case, the IR absorption spectrum can be analyzed to examine the specimen carbonized by a leakage current. The analysis result shows that absorption peaks appear at the wave numbers of $3,400[cm^{-1}]$ and $1,618[cm^{-1}]$, which can be an important factor to verify the carbonizing causes.

Fabrications and properties of ZnS thin film used as a buffer layer of electroluminescent device (전계발광소자 완충층용 ZnS 박막 제작 및 특성)

  • 김홍룡;조재철;유용택
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.117-122
    • /
    • 1994
  • The role of ZnS buffer layer not only suppresses chemical reactions between emission material and insulating material but also alters the luminescence and the crystallinity of the emission layer, if ZnS buffer layer was sandwiched between emission layer and insulating layer of electroluminescent device. In this research, we fabricated ZnS thin film with rf magnetron sputter system by varying rf power 100, 200W, substrate temperature 100, 150, 200, 250.deg. C and post-annealing temperature 200, 300, 400, 500.deg. C and analysed X-ray diffraction pattern, transmission spectra and cross section by SEM photograph for seeking the optimal crystallization condition of ZnS buffer layer. As a result, increasing the rf power, the crystallinity of ZnS thin film was improved. It was found that the ZnS thin film had better properties than anything else when fabricated with the following conditions ; rf power 200W, substrate temperature 150.deg. C, and post-annealing temperature 400.deg. C. ZnS thin film had the transmittance more than 80% in visible range. So it is suitable to use as a buffer layer of electroluminescent devices.

  • PDF

Electrical Properties of Molecular Diode Using Eicosanoic Acid Langmuir-Blodgett(LB) Monolayer Film (Eicosanoic Acid Langmuir-Blodgett(LB) 박막을 이용한 분자 다이오드의 전기적 특성)

  • Koo, Ja-Ryong;Lee, Ho-Sik;Kwon, Hyuck-Joo;Sohn, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.148-153
    • /
    • 2003
  • Electron transfer through an Langmuir-Blodgett(LB) monolayer film sandwiched between metal electrodes. We used an eicosanoic acid material and the material was very famous as a thin film insulating material. Eicosanoic acid monolayer was deposited by Langmuir-Blodgett(LB) technique and a subphase was a $CdCl_2$ solution as a 2${\times}10^{-4}$ mol/L. Also we used a bottom electrode as an Al/$Al_2O_3$ and a top electrode as a Al and Ti/Al. Here, the $Al_2O_3$ on the bottom electrode was deposited by thermal evaporation method. The $Al_2O_3$ layer was acted on a tunneling barrier and insulating layer in tunnel diode. It was found that the proper transfer surface pressure for film deposition was 25 mN/m and the limiting area per molecule was about 24 ${\AA}^2$/molecule. When the positive and negative bias applied to the molecular device, the behavior shows that a tunnel switching characteristics. This result were analyzed regarding various mechanisms.