• Title/Summary/Keyword: Instrumented Capsule

Search Result 39, Processing Time 0.03 seconds

Pressure Drop and Vibration Characteristics of the Capsule with the Modification of Bottom Structures (캡슐 하단부 구조변경에 따른 압력강하 및 진동특성)

  • Choi, M.H.;Choo, K.N.;Cho, M.S.;Lee, K.H.;Kim, B.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.782-787
    • /
    • 2005
  • The bottom structure of an instrumented capsule is a part which is joined at the receptacle of the flow tube in the reactor in-core. A geometrical change or the bottom structure has an effect on the pressure drop and the vibration of the capsule. The out-pile test to evaluate the structural Integrity of the material capsule called 04M-l7U was performed by using a single channel and a half core test loop. From the pressure drop test, the optimized diameter of the cone shape's bottom structure which satisfies HANARO's flow requirement (19 6 kg/s) is 71 mm. The maximum displacement of the capsule measured at the half core test loop is lower than 1.0 mm. From the analysis results, it is found that the test hole will not be interfered with near the flow tubes because its displacement due to the cooling water is very small at 0.072 mm. The fundamental frequency of the capsule under water is 9.64 Hz. It is expected that the resonance between the capsule and the fluid flow due to the cooling water in HANARO's In-core will not occur. Also, the new bottom structure of a solid cone shape with 71 mm in diameter will be applicable to the material and special capsules in the future.

  • PDF

ADVANCED TEST REACTOR TESTING EXPERIENCE - PAST, PRESENT AND FUTURE

  • Marshall Frances M.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.411-416
    • /
    • 2006
  • The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the comer 'lobes' to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors - US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, which places the capsule in direct contact with the primary coolant. The next level of experiment complexity is an instrumented lead experiment, which allows for active control of experiment conditions during the irradiation. The most complex experiment is the pressurized water loop, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans.

Effect of Neutron Energy Spectra on the Formation of the Displacement Cascade in ${\alpha}-Iron$

  • Kwon Junhyun;Seo Chul Gyo;Kwon Sang Chul;Hong Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.497-505
    • /
    • 2003
  • This paper describes a computational approach to the quantification of primary damage under irradiation and demonstrates the effect of neutron energy spectra on the formation of the displacement cascade. The development of displacement cascades in ${\alpha}-Iron$ has been simulated using the MOLDY code - a molecular dynamics code for simulating radiation damage. The primary knock-on atom energy, key input to the MOLDY code, was determined from the SPECTER code calculation on two neutron spectra. The two neutron spectra include; (i) neutron spectrum in the instrumented irradiation capsule of the high-flux advanced neutron application reactor (HANARO), and (ii) neutron spectrum at the inner surface of the reactor pressure vessel steel for the Younggwang nuclear power plant No.5 (YG 5). Minor differences in the normalized neutron spectra between the two spectra produce similar values of PKA energy, which are 4.7 keV for HANARO and 5.3 keV for YG 5. This similarity implies that primary damage to the components of the commercial nuclear reactors should be well simulated by irradiation in the HANARO. Moreover, the application of the MD calculations corroborates this statement by comparing cascades simulation results.