• 제목/요약/키워드: Instrumental Variable Identification Method

검색결과 12건 처리시간 0.017초

MR 댐퍼의 비선형해석을 이용한 반능동형 제진대에 관한 연구 (A Study on Semi-active Vibration Isolation Table using a Nonlinear Analysis of the MR Damper)

  • 김도영;전종균;권영철
    • 한국소음진동공학회논문집
    • /
    • 제24권11호
    • /
    • pp.861-867
    • /
    • 2014
  • In this study, a semi-active isolator was constructed from applying a MR damper that used the MR fluid to an isolator. The parameter identification was also performed to determine the characteristics of this semi-active isolator during which the least squares method and the auxiliary variable method were applied to produce a value closest to the true value. In addition, the MR damper's nonlinear damping force was closely analyzed to greatly reduce the range of error. Based on this analysis, it was discovered that the parameter tended to increase with more electric current. Such analysis of the dynamic properties of semi-active isolator proved that constructing an isolator that provides a more stable operation could be achieved.

엔드밀 가공시 절삭력을 이용한 공구날 주파수 분석법 (An Analysis on the Tooth Passing Frequency using End-milling Force)

  • 김종도;윤문철;조현덕
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.1-7
    • /
    • 2011
  • The mode analysis of end-milling was introduced using recursive parametric modeling. Also, a numerical mode analysis of FRF in end-milling at different conditions was performed systematically. In this regard, a REIVM(recursive extended instrumental variable method) modeling algorithm was adopted and natural modes of real and imaginary part were discussed. This recursive approach can be used for the on-line system identification and monitoring of an end-milling for this purpose. For acquiring a cutting force, an experimental practice was performed. And these end-milling forces were used for the calculation of FRF(Frequency response function) and its mode analysis. Also, the FRF was analysed for the prediction of end-milling system. As a results, this algorithm was successful in each condition for the detection of natural modes of end-milling. After numerical analysis of the FRF, the tooth passing frequency was discriminated in their FRF, power spectrum and mode calculation.