• Title/Summary/Keyword: Instantaneous power control

Search Result 287, Processing Time 0.024 seconds

A Study on Welding Performance Improvement of Inverter Arc Welding Machine using Instantaneous Output Current Control Method

  • Chae, Y.M.;Gu, J.Y.;Gho, J.S.;Mok, H.S.;Choe, G.H.;Won, C.Y;Kim, G.S.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.1012-1016
    • /
    • 1998
  • According to the adoption of inverter circuit topology for welding machine area, the improvement of welding performance can be achieved. However conventional CO2 inverter arc welding machine uses the constant voltage characteristics. So the metal transfer is performed under unoptimum condition in the sence of spatter generation. In this paper the new control algorithm is proposed for welding machine, which is the instantaneous output current control method using single chip microprocessor. But the optimum waveform of welding current is still uncertain, as a first step for figuring out the optimized waveforms, this study was performed. And as a result of performance test of the proposed system, it was demonstrated that all of the waveform variation parameter could be set individually and the generated spatter is reduced compared to conventional inverter arc welding machine.

  • PDF

Power Factor Correction Method without Input Current Sensor (입력전류센서 없는 단상전력변환기의 역률개선 기법)

  • Jung, Young-Seok;Moon, Gun-Woo;Rho, Chung-Wook;Lee, Jun-Young;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.564-566
    • /
    • 1996
  • New simple control method of power factor correcting(PFC) boost convertor without instantaneous measurement of input current is proposed. Using the averaged model, the power factor correction scheme is presented. With the measurements of input voltage and output voltage, the control signal is generated to make the shape of the line current same as the input voltage. The validity of the controller is verified through the computer simulations.

  • PDF

Improvement of Speed Ripple in Low Speed Range for PMSM using Observer (관측자를 이용한 영구자석형 동기모터의 저속영역 속도리플 개선)

  • 김정태;노철원;최종률
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.65-69
    • /
    • 1997
  • Generally, we often use a speed sensor based on a rotary encoder and we can obtain a speed information by counting the increased or decreased number of encoder pulses in a sampling period. However, these speed measurement systems do not inherently produce a true, instantaneous speed information and them the speed ripple is generated by speed measurement errors. In order to overcome this problem, speed observer is used for the accurate speed measurement and improvement of speed ripple for Permanent Magnet Synchronous Motor (PMSM) in this paper. Speed observer estimates the instantaneous speed at each sampling instant. This estimated speed signal is then used as the speed feedback signal for the speed loop control. The proposed speed observer system is proved simulation using SABER simulation S/W.

  • PDF

Low Speed Drive of Motor Using Least Order Load $Torque{\cdot}Inertia$ Observer (최소차원 토크${\cdot}$관성 관측기를 이용한 전동기 극저속 운전)

  • Kim, Eun-Gi;Jeon, Kee-Young;Oh, Bong-Hwan;Chung, Choon-Byeong;Lee, Hoon-Goo;Kim, Yong-Joo;Seo, Young-Soo;Han, Kyung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.234-236
    • /
    • 2005
  • In this paper, an instantaneous speed observer with a reduced order is proposed to implement an indirect control for an motor with excellent dynamic stability and performance in a very low speed region. The proposed observer can estimate the instantaneous speed in very low speed region and simplify the system configuration by adopting a least order load torque-inertia observer to estimate the load torque and the rotor speed. Simulation are carried out to illustrate the performance of the proposed estimator at very low speed.

  • PDF

Sensorless control of Switched Reluctance Generator using Instantaneous inductance (순시 인덕턴스를 이용한 SRG의 센서리스 제어)

  • Oh Sung-bo;Kim Young-seok;Shin Jae-hwa;Kim Young-jo
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.38-41
    • /
    • 2001
  • Switched reluctance generators(SRGs) attract much attention in the generator because of high efficiency, simplicity, and ruggedness. They require rotor position information In determine the turn-on and turn-off angle, but the rotor position sensor is less tolerant of extreme environmental conditions, such as high temperature or dust, so the position sensor is limited and undesirable. This paper describes a new approach to estimate the rotor position from the measured terminal voltages and currents of the SRG. The proposed method is based on the instantaneous inductance of the SRG. The proposed method is verified by computer simulations and experiments.

  • PDF

Real-Time Implementation of Shunt Active Filter P-Q Control Strategy for Mitigation of Harmonics with Different Fuzzy M.F.s

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.821-829
    • /
    • 2012
  • This research article presents a novel approach based on an instantaneous active and reactive power component (p-q) theory for generating reference currents for shunt active filter (SHAF). Three-phase reference current waveforms generated by proposed scheme are tracked by the three-phase voltage source converter in a hysteresis band control scheme. The performance of the SHAF using the p-q control strategy has been evaluated under various source conditions. The performance of the proposed control strategy has been evaluated in terms of harmonic mitigation and DC link voltage regulation. In order to maintain DC link voltage constant and to generate the compensating reference currents, we have developed Fuzzy logic controller with different (Trapezoidal, Triangular and Gaussian) fuzzy M.F.s. The proposed SHAF with different fuzzy M.F.s is able to eliminate the uncertainty in the system and SHAF gains outstanding compensation abilities. The detailed simulation results using MATLAB/SIMULINK software are presented to support the feasibility of proposed control strategy. To validate the proposed approach, the system is also implemented on a real time digital simulator and adequate results are reported for its verifications.

Time-Optimal Power Control for KMRR Using Reactivity Constraint Method (반응도 제한법에 의한 KMRR의 시간 최적 출력 제어)

  • Lee, Byung-Ill;Kim, Myung-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.30-40
    • /
    • 1991
  • For automatic power control of KMRR, a new method, Reactivity Constraint Method, is applied for time optimal control. This method limits the net reactivity to the amount that can be offset by instantaneous control rod action. The reactivity to be constrained for the constant reactor period should be obtained by the dynamic period equation. A new formulation of the dynamic period equation for 2-point kinetics model is presented. A methematical controller model was applied to the plant simulator, KMRSIM to test this control law. The performance test showed that reactivity constraint approach is also a reliable means for reactor power change control.

  • PDF

The Design of UPFC simulator by using EMTDC (EMTDC를 이용한 시뮬레이터급 통합전력제어기의 설계)

  • Jeon, Jin-Hong;Song, Eui-Ho;Kim, Ji-Won;Chun, Yeung-Han;Kim, Hak-Man;Kook, Kyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.374-376
    • /
    • 2001
  • FACTS technology is developed into the sophisticated system technology which combines conventional power system technology with power electronics, micro-process control, and information technology. Its objectives are achieving enhancement of the power system flexibility and maximum utilization of the power transfer capability through improvements of the system reliability, controllability, and efficiency[1]. As a series and shunt compensator, UPFC consists of two inverters with common dc link capacitor bank. It controls the magnitude of shunt bus voltage and real and reactive power flow of transmission line[2]. In this paper, we present the design and control algorithm of UPFC simulator for KERI simulator. As a control algorithm is implemented by digital controller, we consider sample-and-hold of signals In this simulation, we use EMTDC/PSCAD V3.0 software which can simulate instantaneous voltage and current.

  • PDF

Compensation of Unbalanced PCC Voltage in an Off-shore Wind Farm of PMSG Type Turbines (해상풍력단지에서의 PMSG 풍력발전기를 활용한 계통연계점 불평형 전원 보상)

  • Kang, Ja-Yoon;Han, Dae-Su;Suh, Yong-Sug;Jung, Byoung-Chang;Kim, Jeong-Joong;Park, Jong-Hyung;Choi, Young-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • This paper proposes a control algorithm for permanent magnet synchronous generators with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage off-shore wind power system under unbalanced grid conditions. Specifically, the proposed control algorithm compensates for unbalanced grid voltage at the PCC (Point of Common Coupling) in a collector bus of an off-shore wind power system. This control algorithm has been formulated based on symmetrical components in positive and negative synchronous rotating reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power is described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of AC input current is injected into the PCC in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm enables the provision of balanced voltage at the PCC resulting in the high quality generated power from off-shore wind power systems under unbalanced network conditions.

Output Power Control of Wind Generation System using Estimated Wind Speed by Support Vector Regression

  • Abo-Khalil Ahmed G.;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.345-347
    • /
    • 2006
  • In this paper, a novel method for wind speed estimation in wind power generation systems is presented. The proposed algorithm is based on estimating the wind speed using Support-Vector-Machines for regression (SVR). The wind speed is estimated using the generator power-speed characteristics as a set of training vectors. SVR is trained off-line to predict a continuos-valued function between the system's inputs and wind speed value. The predicted off-line function as well as the instantaneous generator power and speed are then used to determine the unknown winds speed on-line. The simulation results show that SVR can define the corresponding wind speed rapidly and accurately to determine the optimum generator speed reference for maximum power point tracking.

  • PDF