• 제목/요약/키워드: Instantaneous error current

검색결과 34건 처리시간 0.022초

개선된 순시무효전력 보상기를 이용한 IPMSM의 센서없는 속도제어 (A Sensorless Control of IPMSM using the Improving Instantaneous Reactive Power Compensator)

  • 나재두
    • 전기학회논문지
    • /
    • 제67권10호
    • /
    • pp.1303-1307
    • /
    • 2018
  • A improving sensorless compensator for the IPMSM(Interior Permanent Magnet Synchronous Motor) drive system is proposed. Generally, the motor drive system is required the robust parameter variation and disturbance. The speed estimation methods of the conventional IRP(Instantaneous Reactive Power) compensator is improved by the speed estimation techniques of the current model observer with the proposed instantaneous reactive power compensator. Performance evaluations of the novel speed error compensator and sensorless control system are carried out by the experiments.

순시 무효전력을 이용한 매입형 영구자석 동기 전동기의 센서리스 속도제어 (A Sensorless Speed Control of an Interior Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power)

  • 강형석;정우택;김영석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권2호
    • /
    • pp.107-115
    • /
    • 2006
  • In this paper, a new speed sensorless control based on an instantaneous reactive power is proposed for the interior permanent magnet synchronous motor(IPMSM) drives. In proposed algorithm, the current observer estimates the line currents and the estimated speed can be yielded from the voltage equation because the information of speed is included in back EMF. To implement speed sensorless control, the current observer is composed by using the voltage equation of the IPMSM in the stationary reference frame fixed to the stator. The estimated speed of the rotor is composed by using the voltage equation of the IPMSM in the rotating reference frame fixed to the rotor The estimated speeds to minimize the speed error compensated by using the instantaneous reactive power. The instantaneous reactive power is calculated on the rotating reference frame fixed to the rotor. The effectiveness of the preposed algorithm is confirmed by the experiments.

보호용 CT의 과도 성능 검증에 관한 연구 (A Study on the Determination of the Transient Performance for Protective Current Transformer)

  • 김동수;박남옥;김철환;류재남
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1727-1732
    • /
    • 2010
  • The Current transformer is classified measuring CT and protective CT for their purpose. The measuring CT is required to retain a specified accuracy over the normal range of load currents, but the protective CT must be capable of providing an adequate output over wide range of fault condition. Therefore, the protective CT must determine the transient performance during fault condition. This paper measured peak instantaneous error of the TPY class CT to determine the transient performance directly and indirectly and studied the test results.

순시무효전력을 이용하여 추정속도를 보상한 영구자석 동기전동기의 센세리스 속도 제어 (A Sensorless Speed Control of a Permanent Magnet Synchronous Motor that the Estimated Speed is Compensated by using an Instantaneous Reactive Power)

  • 최양광;김영석;전병호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권11호
    • /
    • pp.577-585
    • /
    • 2003
  • This paper proposes a new speed sensorless control method of a permanent magnet synchronous motor using an instantaneous reactive power. In the proposed algorithm, the line currents are estimated by a observer and the estimated speed can be yielded from the voltage equation because the information of speed is included in back emf. But the speed estimation error between the estimated and the real speeds is occured by errors due to measuring the motor parameters and sensing the line current and the input voltage. To minimize the speed estimation error, the estimated speed is compensated by using an instantaneous reactive power. In this paper, the proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of algorithm is confirmed by the experiments.

2상 유도전동기용 벡터제어 인버터를 위한 전류측정 오차 보상 방법 (Compensation Method of Current Measurement Error for Vector-Controlled Inverter of 2-Phase Induction Motor)

  • 이호준;윤덕용
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1204-1210
    • /
    • 2016
  • The phase currents must be accurately measured to achieve the instantaneous torque control of AC motors. In general, those are measured using the current sensors. However, the measured current signals can include the offset errors and scaling errors by several components such as current sensors, analog amplifiers, noise filter circuits, and analog-to-digital converters. Therefore, the torque-controlled performance can be deteriorated by the current measurement errors. In this paper we have analyzed the influence caused by vector control of 2-phase induction motor when two errors are included in measured phase currents. Based on analyzed results, the compensation method is proposed without additional hardware. The proposed compensation method was applied vector-controlled inverter for 2-phase induction motor of 360[W] class and verified through computer simulations and experiments.

개선된 순시 무효전력 보상기와 함께 적용된 적응 역기전력과 전류 모델 관측기 적용한 돌극형 영구자석 동기 전동기의 센서리스 제어 (Improved Instantaneous Reactive Power Compensator Applied Sensorless Control of IPMSM with Adaptive Back EMF and Current Model Observer)

  • 이준민;박순제;홍주훈;김우희;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.934-935
    • /
    • 2015
  • This paper presents the sensorless control method that employs the adaptive back-EMF(Electromotive Force) and current model observer of interior permanent magnet synchronous motor(IPMSM). The estimated back EMF considering a saliency is obtained by using the adaptive control method. The estimated EMF is inputted to the current model observer which is connected in series with adaptive back EMF estimator and is used to estimate the position and speed of the rotor. In order to improve the shortcomings of conventional method using the current error components multiplied in the compensation constant, the modified instantaneous reactive power compensator is applied. The validity of the control system presented is verified by the simulation.

  • PDF

전류오차보상에 의한 직류전동기의 센서리스 속도제어 (Sensorless Speed Control of Direct Current Motor using Current Error Compensation)

  • 함형철;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.930-936
    • /
    • 2003
  • A new method of direct current motor drive, which requires neither shaft encoder nor speed estimator, is presented. The proposed scheme is based on decreasing current gap between a numerical model and an actual motor. By supplying the identical instantaneous voltage to both model and motor in the direction of reducing the current difference, the rotor approaches to the model speed, that is, reference value. The performance of direct current motor drives without speed sensor is generally poor at very low speed. However, in this system, it is possible to obtain good speed performance in the low speed range.

순시무효전력을 이용한 영구자석 동기전동기의 새로운 센서리스 제어 (New Sensorless Control Strategy for a Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power)

  • 최양광;김영석;한윤석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.247-254
    • /
    • 2004
  • The mechanical informations such as the rotor speed and angle are required to operate the Cylindrical Permanent Magnet Synchronous Motor(PMSM). A resolver or encoder is typically used to supply the mechanical informations. This position sensor adds length to the machine, raises system cost, increases rotor inertia and requires additional devices. As the result, there has been a significant interest in the development of sensorless strategies to eliminate the position sensor. This paper presents an implementation of the new sensorless speed comtrol scheme for a PMSM. In the proposed algorithm, the line currents are estimated by a observer and the estimated speed can be yielded from the voltage equation because the information of speed is included in back emf. But the speed estimation error between the estimated and the real speeds is occured by errors due to measuring the motor parameters and sensing the line current and the input voltage. To minimize the speed estimations error, the estimated speeds are compensated by using an instantaneous reactive power in synchronously rotating reference frame. In this paper, the proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of algorithm is confirmed by the experiments.

순간정전 보상을 갖는 능동 전력 필터 (An active power filter with an instantaneous power failure compensation)

  • 이용덕;이우철;이택기;김득수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.293-295
    • /
    • 2007
  • This paper proposes a control algorithm for the power supply to maintain the desired output voltage waveform when the instantaneous power failure occurs. The proposed system switches the control mode between the voltage-controlled and the current-controlled modes in the instantaneous power failure. The proposed control method has little steady-state error and good transient response. The validity of the proposed scheme is investigated through simulation and experimental results.

  • PDF

Broadband Instantaneous Frequency Measurement System Based on the Dual Paths of the Stimulated Brillouin Scattering Effect

  • Jiahong Zhang;Weijie Liao
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.378-386
    • /
    • 2023
  • A wideband instantaneous frequency measurement (IFM) system is been proposed, designed and analyzed. Phase modulation to intensity modulation conversion is implemented based on the stimulated Brillouin scattering (SBS) effect, and the microwave frequency can be measured by detecting the change in output power. Theoretical analysis shows that the frequency measurement range can be extended to 4fb by adjusting the two sweeping signals of the phase modulators with a difference of 2fb. The IFM system is set up using VPI transmission maker software and the performances are simulated and analyzed. The simulation results show that the measurement range is 0.5-45.96 GHz with a maximum measurement error of less than 9.9 MHz. The proposed IFM system has a wider measurement range than the existing SBS-based IFM system.