• Title/Summary/Keyword: Instantaneous Voltage control

Search Result 205, Processing Time 0.025 seconds

A PWM Buck AC-AC Converter with Instantaneous Compensation for Voltage Sag and Surge (전압 Sag와 Surge에 대한 순시보상 기능을 갖는 PWM Buck AC-AC 컨버터)

  • Choi Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.197-200
    • /
    • 2001
  • This paper presents a PWM buck AC-AC converter with instantaneous compensation for input voltage sag and surge. The presented converter use commercial IGBT modules and its output voltage is regulated so as to remain constant AC output voltage. The feedforward control technique is also proposed to establish instantaneous duty level change whereby stable output voltage will be retained. This paper show the characteristics and control algorithm of the converter through various PSPICE simulations.

  • PDF

Design and Analysis of Instantaneous Voltage Drop Compensator (순간전압강하 보상기의 설계와 해석)

  • Lee, Taeck-Kie;Hyun, Dong-Seok;Hwang, Yong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.478-481
    • /
    • 1991
  • This paper discusses the principle and structure of instantaneous voltage drop compensator, which protects damage from instantaneous voltage drop in systems such as computer, variable speed drive, high voltage discharge-lamp, magnet switch. When instantaneous voltage drop occurs, control circuits detect it, then produce output voltage the same as normal condition voltage. Instantaneous voltage drop compensator has condenser bank as energy storage component, so system can be made small, light weight compared with UPS. In normal state, utility source transfers power, and in instantaneous voltage drop state, the energy of condenser bank transfers power through inverter, so high efficiency, compact, and especially low cost system can be manufactured.

  • PDF

A New Control Algorithm for Instantaneous Voltage Sag Corrector (순시전압강하 보상기의 새로운 제어 기법)

  • Lee, Sang-Hoon;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.172-176
    • /
    • 2001
  • In this paper, a new detection algorithm of faulted voltages under the unbalanced condition and a control algorithm of the instantaneous voltage sag corrector (IVSC) are proposed. To quantify the unbalance under fault conditions, the voltages are decomposed into two balanced three-phase systems using the symmetrical components of positive and negative sequence voltages, which is defined by magnitude factor (MF) and unbalance factor (UF). New control algorithm based on MF and UF values for instantaneous voltage compensation are proposed and verified through the PSCAD/EMTDC simulation and experimental results.

  • PDF

A Sensorless Speed Control of an Interior Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power (순시 무효전력을 이용한 매입형 영구자석 동기 전동기의 센서리스 속도제어)

  • Kang Hyoung-Seok;Joung Woo-Taik;Kim Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.107-115
    • /
    • 2006
  • In this paper, a new speed sensorless control based on an instantaneous reactive power is proposed for the interior permanent magnet synchronous motor(IPMSM) drives. In proposed algorithm, the current observer estimates the line currents and the estimated speed can be yielded from the voltage equation because the information of speed is included in back EMF. To implement speed sensorless control, the current observer is composed by using the voltage equation of the IPMSM in the stationary reference frame fixed to the stator. The estimated speed of the rotor is composed by using the voltage equation of the IPMSM in the rotating reference frame fixed to the rotor The estimated speeds to minimize the speed error compensated by using the instantaneous reactive power. The instantaneous reactive power is calculated on the rotating reference frame fixed to the rotor. The effectiveness of the preposed algorithm is confirmed by the experiments.

A new ultrasonic power generator using instantaneous current resultant control-based inverter and its control system

  • Kim, Dong-Hee;Kim, Young-Seok;Yoo, Dong-Wook;Kim, Yo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.631-636
    • /
    • 1987
  • The design of ultrasonic transducer energy processing systems requires highly reliable command featuring mechanical frequency tracking and constant velocity control of the ultrasonic transducer with an acoustic load. This paper presents a new conceptional instantaneous current resultant control base high-frequency inverter using self turn-off devices driving an electrostrictive ultrasonic transducer system and its optimum control technique, which is implemented by feed-back of the ultrasonic transducer applied voltage and instantaneous velocity of the transducer vibrating system through a Phase-Locked-Loop control scheme. The feedback voltage corresponding to instantaneous velocity is averaged over a half-period with respect to constant amplitude/constant velocity control strategy. Described are the theory of this signal detection technique and the experimental set-up.

  • PDF

Instantaneous Voltage Control Scheme of Auxiliary Power Supply System for Electric Railway Vehicles (철도차량 보조전원장치의 순시전압제어)

  • 김재식;최재호;임성수;이은규
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.349-356
    • /
    • 1999
  • This paper presents an instantaneous voltage control scheme of au킹liary power supply system for the electric railway v vehicles, The resonance problem of the LC filter and the existing steady state error are more serious as the use of l instantaneous voltage control techniques for the fast transient response at the nonlinear load, A filter capacitor current f feedback loop is considered to increase the damping ratio of the voltage transfer function for the suppression of the resonance problem of the LC inverter output filter. To eliminate the steady state en‘or existing in case of the AC l instantaneous voltage control. the high gain transfer function is added to the conventional PI controller. The theoretical a analysis is well described with the simulation results. The validity of the proposed schemes is well verified through the s simulation and expelimental results for the 5 kVA prototype.

  • PDF

A Study on the Design of the Dynamic Voltage Restorer Prototype (Dynamic Voltage Restorer Prototype 설계에 관한 연구)

  • Kim, Ji-Won;Chun, Yeong-Han;Jeon, Jin-Hong;Oh, Tae-Kyoo;Park, Dong-Wook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.3
    • /
    • pp.140-145
    • /
    • 2001
  • The instantaneous voltage drop is occurred when the fault is happened on the nearby feeders. The instantaneous voltage drop is continued during relatively short period. But, the effect of it can be very severe to some sensitive devices. That is, it can be the reason of restart or malfunction of some devices. And these phenomenons can cause the enormous economical damage and shorten the lifetime of the devices. In this paper, the device which can compensate the instantaneous voltage drop, is studied. Through the computer simulation using PSCAD/EMTDC, the validity of the control algorithm using peak detection method is verified. And the Dynamic Voltage Restorer(DVR) prototype is designed and constructed. Through the experiment, the function and performance of the DVR prototype is verified.

  • PDF

Instantaneous Current Control for Parallel Inverter with a Current Share Bus (전류공유버스를 이용한 병렬 인버터 순시 제어기 설계)

  • 이창석;김시경
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.90-94
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employes active and reactive power control or frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employes a instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Futhermore, the proposed control scheme is verified through the simulation in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

Digital Power Control of LLC Resonant Inverter for Microwave Oven (전자레인지용 LLC 공진형 인버터의 디지털 출력 제어)

  • Kang, Kyelyong;Kim, Heung-Geun;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.457-462
    • /
    • 2017
  • This paper proposes a digital power control of the LLC resonant half-bridge inverter for high power microwave oven application. Conventional half-bridge inverter for driving a microwave oven uses a hardware-based power control method which varies the frequency according to the AC source voltage. In this case, it is difficult to control the output power according to the variation of the load status of magnetron. The proposed power control consists of an instantaneous current generator and a current controller. Instantaneous current generator makes an instantaneous current reference from power command using input voltage information. Current controller controls input current which has an information of status of magnetron. The proposed power control does not require any compensation algorithm for the change of the load status of the magnetron and change of input voltage. The validity of the proposed method for the control of the change of input voltage and frequency is verified by both simulation and experiment.

A High Performance Exciter Control System of Synchronous Generator using Direct Instantaneous Voltage Control Method (직접 순시전압 제어기법에 의한 동기발전기의 고성능 여자 제어시스템)

  • Lee, Dong-Hee;Liang, Jianing;Lee, Sang-Hoon;Ahn, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.68-74
    • /
    • 2007
  • This paper presents a simple, robust excitation control system for synchronous generator using direct instantaneous voltage control(DIVC) method DIVC method can operate as maximum dynamics of power conversion system without any control gains such as PID controller. And the transient overshoot of generator voltage can be suppressed with a simple time constant. The proposed control scheme is verified by the computer simulation and experimental results in prototype generation system.