• Title/Summary/Keyword: Instantaneous Amplitude

Search Result 95, Processing Time 0.027 seconds

An Application of Hilbert-Huang Transform on the Non-Stationary Astronomical Time Series: The Superorbital Modulation of SMC X-1

  • Hu, Chin-Ping;Chou, Yi;Wu, Ming-Chya;Yang, Ting-Chang;Su, Yi-Hao
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.79-82
    • /
    • 2013
  • We present the Hilbert-Huang transform (HHT) analysis on the quasi-periodic modulation of SMC X-1. SMC X-1, consisting of a neutron star and a massive companion, exhibits superorbital modulation with a period varying between ~40 d and ~65 d. We applied the HHT on the light curve observed by the All-Sky Monitor onboard Rossi X-ray Timing Explorer (RXTE) to obtain the instantaneous frequency of the superorbital modulation of SMC X-1. The resultant Hilbert spectrum is consistent with the dynamic power spectrum while it shows more detailed information in both the time and frequency domains. According to the instantaneous frequency, we found a correlation between the superorbital period and the modulation amplitude. Combining the spectral observation made by the Proportional Counter Array onboard RXTE and the superorbital phase derived in the HHT, we performed a superorbital phase-resolved spectral analysis of SMC X-1. An analysis of the spectral parameters versus the orbital phase for different superorbital states revealed that the diversity of $n_H$ has an orbital dependence. Furthermore, we obtained the variation in the eclipse profiles by folding the All Sky Monitor light curve with orbital period for different superorbital states. A dip feature, similar to the pre-eclipse dip of Her X-1, can be observed only in the superorbital ascending and descending states, while the width is anti-correlated with the X-ray flux.

Thermal Memory Effect Modeling and Compensation in Doherty Amplifier for Pre-distorter (전치왜곡기 적용을 위한 Doherty 증폭기의 열 메모리 효과 모델링과 보상)

  • Lee, Suk-Hui;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.65-71
    • /
    • 2007
  • Doherty amplifier has more efficiency and distortion than general amplifier. These distortion classified amplitude distortion and phase distortion, memory effect distortion. This paper reports on an attempt to investigate, model and quantity the contribution of the electrical nonlinearity effects and the thermal memory effects to a doherty amplifier's distortion generation and suggests thermal memory effect compensator for pre-distorter. Also this paper reports on the development of an accurate dynamic expression of the instantaneous junction temperature as a function of the instantaneous dissipated power. The parameters of suggested model suppress thermal memory effects doherty amplifier with pre-distorter. Pre-distorter with electrothermal memory effect compensator for doherty amplifier enhanced ACLR performance about 22 dB than general doherty amplifier. Experiment results were mesured by 50W LDMOS Doherty amplifier and pre-distorter with electrothermal memory effect compensator was simulated by ADS.

A New Controller of Single Phase Active Power Filter Using Rotating Synchronous Frame d-q Transformation (회전하는 동기 좌표계 d-q 변환을 이용한 단상 능동 전력 필터의 새로운 제어기)

  • Kang, Min Gu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.271-275
    • /
    • 2014
  • A New Single Phase Active Power Filter Controller is proposed using Rotating Synchronous Frame d-q transformation. Instantaneous Active Power is calculated using d-q transformation. Average Value of Instantaneous Active Power is obtained using Low Pass Filter. Because power factor is corrected, source current is in phase with source voltage. Amplitude of source current is calculated using single phase power formula. Reference signal of compensated current of Active power filter is obtained from source current reference signal minus load current. Simulation is performed using hysteresis current controller in proposed new controller. Simulation result shows that because active power filter compensates load current, source current is in phase with source voltage and source current is sinusoidal. And Hilbert transformer is builded using all pass filter.

On Adaptive LDPC Coded MIMO-OFDM with MQAM on Fading Channels (페이딩 채널에서 적응 LDPC 부호화 MIMO-OFDM의 성능 분석)

  • Kim, Jin-Woo;Joh, Kyung-Hyun;Ra, Keuk-Hwan
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.80-86
    • /
    • 2006
  • The wireless communication based on LDPC and adaptive spatial-subcarrier coded modulation using MQAM for orthogonal frequency division multiplexing (OFDM) wireless transmission by using instantaneous channel state information and employing multiple antennas at both the transmitter and the receiver. Adaptive coded modulation is a promising idea for bandwidth-efficient transmission on time-varying, narrowband wireless channels. On power limited Additive White Gaussian Noise (AWGN) channels, low density parity check (LDPC) codes are a class of error control codes which have demonstrated impressive error correcting qualities, under some conditions performing even better than turbo codes. The paper demonstrates OFDM with LDPC and adaptive modulation applied to Multiple-Input Multiple-Output (MIMO) system. An optimization algorithm to obtain a bit and power allocation for each subcarrier assuming instantaneous channel knowledge is used. The experimental results are shown the potential of our proposed system.

Effects of Root Gap on Residual Stresses and Deformation in the Multi-Pass Weld of Thick Plates for Steel Bridge (교량용 후판 다층용접시 잔류응력과 변형에 미치는 루트간격의 영향)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.88-96
    • /
    • 1999
  • The effects of root gap on welding residual stress and deformation are dealt with the multi-pass weldment with three kinds(0, 6, 30mm) of root gap by F.E.M common code, and then compared with experiment data. In this analysis, an 100% ramp heat input model was used to avoid numerical convergence problem due to an instantaneous increase in temperature near the fusion zone, and the effect of a moving arc in a two dimensional plane was also included. During the analysis, a small time increment was applied in a period with instantaneous temperature fluctuation while a large time increment was used in the rest period. The residual stress is distributed as symmetric types and maximum value is also equivalent when the weldment with 0mm and 6mm root gap is welded. In the case of 30mm root gap welding, the distribution of the residual stress extends over a wide range as asymmetric types due to the built-up weld, and most of the residual stress is biased in the side of a built-up weld part. In case of 0mm gap welding and 6mm gap welding, a little angular distortion occurs, but the level of deformation is small. When the weldment with 30mm root gap is welded, the angular deformation of the asymmetric types, however, occurs larger than the other specimens. The experimental and the analytic results show good coincidence and indicate that the welding residual stress and deformation distribution of 30 mm root gap specimen may be asymmetric and the amplitude is larger than those of root gap specimen under standard.

  • PDF

Blasting wave pattern recognition based on Hilbert-Huang transform

  • Li, Xuelong;Wang, Enyuan;Li, Zhonghui;Bie, Xiaofei;Chen, Liang;Feng, Junjun;Li, Nan
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.607-624
    • /
    • 2016
  • Rockburst is becoming more serious in Chinese coal mine. One of the effective methods to control rockburst is blasting. In the paper, we monitored and analyzed the blasting waves at different blast center distances by the Hilbert-Huang transform (HHT) in a coal mine. Results show that with the increase of blast center distance, the main frequency and amplitude of blasting waves show the decreasing trend. The attenuation of blasting waves is slower in the near blast field (10-75 m), compared with the far blast field (75-230 m). Besides, the frequency superposition phenomenon aggravates in the far field. A majority of the blasting waves energy at different blast center distances is concentrated around the IMF components 1-3. The instantaneous energy peak shows attenuation trend with the blast center distance increase, there are two obvious energy peaks in the near blast field (10-75 m), the energy spectrum appears "fat", and the total energy is greater. By contrast, there is only an energy peak in the far blast field, the energy spectrum is "thin", and the total energy is lesser. The HHT three dimensional spectrum shows that the wave energy accumulates in the time and frequency with the increasing of blast center distance.

Symbol Error Rate Analysis for Fixed Multi-User Superposition Transmission in Rayleigh Fading Channels (레일레이 페이딩 채널에서 고정적 다중사용자 중첩 전송에 대한 심벌 오차율 성능 분석)

  • Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1379-1385
    • /
    • 2018
  • In the conventional multi-user superposition transmission, the power allocation coefficients of data symbols and the received signal processing of users are determined by the condition of instantaneous channel powers. However, the use of instantaneous channel powers can increase the system complexity. Hence, we consider fixed multi-user superposition transmission using average channel powers. The fixed multi-user superposition transmission can reduce the system complexity because it uses the condition of average channel powers that slowly change over time in order to decide the power allocation coefficients and the received signal processing. In this paper, we analyze the average symbol error rate for the fixed multi-user superposition transmission. In particular, an expression for the average symbol error rate of M-ary Quadrature Amplitude Modulation is derived assuming Rayleigh fading channels. In addition, through the numerical results, we show that the conventional and fixed multi-user superposition transmissions achieve the similar average symbol error rate performances at the user in the severe channel condition.

Analysis and Control of Instantaneous Voltage Compensator Using New Phase Angle Detection Method Synchronized by Positive Sequence of Unbalanced 3-Phase Source (3상 불평형 전원 시스템의 새로운 위상각 검출기법을 이용한 순간전압보상기의 해석 및 제어)

  • 이승요;고재석;목형수;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.275-284
    • /
    • 1999
  • Unbalanced source voltage in the 3-phase power system is decomposed into positive, negative and zero sequence c components. Also, assuming there is no neutral path in the system, the zero sequence component is not shown on the l load side. Therefore, in the unbalanced power system without neutral path. it is possible to provide balanced voltage to t the load side by compensating negative sequence component and also to regulate the voltage amplitude by controlling t the positive sequence component. In addition, the symmetrical components due to voltage unbalance can be effectively d detected on the synchronous reference frame by using dlongleftarrowq transformation. In this paper, an algorithm not only c compensating unbalanced source voltage by canceling the negative sequence component on the synchronous reference f frame but also maintaining load voltages constantly is proposed. Also a novel method for phase angle detection s synchronized by positive sequence component under unbalanced source voltage is suggested and this detected phase a angle is used for d-q transformation. The performances and characteristics of the proposed compensating system are a analyzed by simulation and verified through experimental results.

  • PDF

Modeling of Welding Heat Input for Residual Stress Analysis (용접 잔류응력 해석을 위한 Heat Input Model 개발)

  • 심용래;이성근
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.34-47
    • /
    • 1993
  • Finite element models were developed for thermal and residual stress analysis for the specific welding problems. They were used to evaluate the effectiveness of the various welding heat input models, such as ramp heat input function and lumped pass models. Through the parametric studies, thermal-mechanical modeling sensitivity to the ramp function and lumping techniques was determined by comparing the predicted results with experimental data. The kinetics for residual stress formation during welding can be developed by iteration of various proposed mechanisms in the parametric study. A ramp heat input function was developed to gradually apply the heat flux with variable amplitude to the model. This model was used to avoid numerical convergence problems due to an instantaneous increase in temperature near the fusion zone. Additionally, it enables the model to include the effect of a moving arc in a two-dimensional plane. The ramp function takes into account the variation in the out of plane energy flow in a 2-D model as the arc approaches, travels across, and departs from each plane under investigation. A lumped pass model was developed to reduce the computation cost in the analysis of multipass welds. Several weld passes were assumed as one lumped pass in this model. Recommendations were provided about ramp lumping techniques and the optimum number of weld passes that can be combined into a single thermal input.

  • PDF

Seismic Attribute Analysis of the Indicators for the Occurrence of Gas Hydrate in the Northwestern Area of the Ulleung Basin, East Sea (동해 울릉분지 북서지역 가스하이드레이트 부존 지시자의 탄성파 속성 분석)

  • Kim, Kyoung Jin;Yi, Bo Yeon;Kang, Nyeon Keon;Yoo, Dong Geun;Shin, Kook Sun;Cho, Young Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.216-230
    • /
    • 2014
  • Based on the interpretation of 3D seismic profiles acquired in the northwestern area of the Ulleung Basin, East Sea, the shallow sediments consist of five seismic units separated by regional reflectors. An anticline is present in the study area that documents activity of many faults. Bottom simulating reflectors are characterized by high RMS amplitude. Acoustic blanking with low RMS amplitude is distinctively recognized in the gas hydrate stability zone. Seismic attribute analysis shows that if gas hydrates are underlain by free gas, the high reflection strength and the low instantaneous frequency are displayed below the boundary between them. Whereas, if not, the reflection strength is low and instantaneous frequency is high continuously below the gas hydrate zone. Based on the spectral decomposition of the bottom simulating reflector, the high envelope at the specific high frequency range indicates the generation of the tuning effect due to the lower free gas content. Four models for the occurrence of the gas hydrate are suggested considering the slope of sedimentary layers as well as the presence of gas hydrate or free gas.