• Title/Summary/Keyword: Instability vibration

Search Result 368, Processing Time 0.027 seconds

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture

  • Raminnea, M.;Biglari, H.;Tahami, F. Vakili
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.153-186
    • /
    • 2016
  • This paper addresses temperature-dependent nonlinear vibration and instability of embedded functionally graded (FG) pipes conveying viscous fluid-nanoparticle mixture. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Reddy third-order shear deformation theory (RSDT) of cylindrical shells are developed using the strain-displacement relations of Donnell theory. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on energy method and Hamilton's principal, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as mode numbers, nonlinearity, fluid velocity, volume percent of nanoparticle in fluid, gradient index, elastic medium, boundary condition and temperature gradient are discussed. Numerical results indicate that with increasing the stiffness of elastic medium and decreasing volume percent of nanoparticle in fluid, the frequency and critical fluid velocity increase. The presented results indicate that the material in-homogeneity has a significant influence on the vibration and instability behaviors of the FG pipes and should therefore be considered in its optimum design. In addition, fluid velocity leads to divergence and flutter instabilities.

Effects of Asymmetry of Bearing Damper Stiffness on the Stability of Rotors (베어링 지지댐퍼 강성의 비대칭이 회전체 동특성에 미치는 영향)

  • 제양규
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.463-469
    • /
    • 2004
  • In order to improve the instability of journal bearings, the leaf spring dampers (LSD) are introduced. The effects of LSD on the stability of journal bearings are investigated theoretically The stability of the journal bearing with LSD are compared with the results of the journal bearing without LSD. And the effects of the asymmetry of the stiffness of the leaf spring damper on the stability of rotors are also investigated.

Analysis for Unstable Phenomenon of Rotating Discs Due to Head Interface (헤드 간섭으로 인한 회전 디스크의 불안정 현상에 대한 분석)

  • Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1609-1614
    • /
    • 2000
  • This paper presents the modeling, theoretical formulation, and stability analysis for a combined system of a spinning disk and a head that contacts the disk. In the analytical model, head interface is considered by a rotating mass-spring-damper system together with a frictional follower force on the damped annular disks. The method of multiple scales is utilized to perform the stability analysis that shows the existence of instability associated with parametric resonances. This instability can be effectively stabilized by increasing the damping ratio of a disk.

  • PDF

Effects of Asymmetry of Bearing Damper Stiffness on the Stability of Rotors (베어링 지지댐퍼 강성의 비대칭이 회전체 동특성에 미치는 영향)

  • 제양규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.100-106
    • /
    • 2003
  • In order to improve the instability of a plane journal bearing, the leaf spring dampers (LSD) are introduced. The effects of LSD on the stability of a plane journal bearing are investigated theoretically. The stability of a plane journal bearing with LSD are compared with the results of a plane journal bearing without LSD. And the effects of the asymmetry of the stiffness of the leaf spring damper on the stability of rotors are also investigated.

  • PDF

Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading

  • Patel, S.N.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.483-510
    • /
    • 2006
  • The dynamic instability characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover the new formulation for the beam element requires five degrees of freedom per node as that of shell element. The method of Hill's infinite determinant is applied to analyze the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters like shell geometry, lamination scheme, stiffening scheme, static and dynamic load factors and boundary conditions, on the dynamic instability behaviour of laminated composite stiffened panels subjected to in-plane harmonic loads along the boundaries. The results of free vibration and buckling of the laminated composite stiffened curved panels are also presented.

Mechanism analysis on fluidelastic instability of tube bundles in considering of cross-flow effects

  • Lai, Jiang;Sun, Lei;Gao, Lixia;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.310-316
    • /
    • 2019
  • Fluidelastic instability is a key issue in steam generator tube bundles subjected in cross-flow. With a low flow velocity, a large amplitude vibration of the tube observed by many researchers. However, the mechanism of this vibration is seldom analyzed. In this paper, the mechanism of cross-flow effects on fluidelastic instability of tube bundles was investigated. Analysis reveals that when the system reaches the critical state, there would be two forms, with two critical velocities, and thus two expressions for the critical velocities were obtained. Fluidelastic instability experiment and numerical analysis were conducted to obtain the critical velocity. And, if system damping is small, with increases of the flow velocity, the stability behavior of tube array changes. At a certain flow velocity, the stability of tube array reaches the first critical state, a dynamic bifurcation occurs. The tube array returns to a stable state with continues to increase the flow velocity. At another certain flow velocity, the stability of tube array reaches the second critical state, another dynamic bifurcation occurs. However, if system damping is big, there is only one critical state with increases the flow velocity. Compared the results of experiments to numerical analysis, it shows a good agreement.

The Effects of Vibration Exercise after Modified Bröstrom Operation in Soccer Players with Ankle Instability

  • Kim, Sanghoon;Kim, Yangrae;Kim, Yongyoun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.2
    • /
    • pp.1791-1796
    • /
    • 2019
  • Background: Vibration exercise after ankle surgery improves proprioception and ankle muscle strength through vibration stimulation. Objective: To examine the effects of vibration exercise on the ankle stability. Design: Randomized controlled clinical trial (single blind) Methods: Twenty soccer players were randomly divided into experimental group and control group. The Vibration exercise program was conducted 12 weeks and 3 times a week. Ankle joint proprioceptive sensory test and Isokinetic muscle strength test were performed using Biodex system pro III to measure plantar flexion / dorsiflexion and eversion / inversion motion. Results: The result of isokinetic test of ankle joint is showed significant improvement in all measurement items, such as leg flexion, lateral flexion, external and internal muscle forces, compared to previous ones by performing vibration movements for 12 weeks. However, in the comparison group, plantar flexor ($30^{\circ}$), eversion muscle ($120^{\circ}$), inversion ($30^{\circ}$) of limb muscle strength were significantly improved compared with the previous phase; was no significant difference in dorsi-flexion. There was no significant difference between groups in all the items. Conclusions: In this study, we analyzed the effects of rehabilitation exercise on soccer players who had reconstructed with an ankle joint ligament injury through vibration exercise device. As a result, we could propose an effective exercise method to improve the ability, and confirmed the applicability as an appropriate exercise program to prevent ankle injuries and help quick return.

Reduction of Sound Radiated Power of Clamped Beams using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 음향파워 저감)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1104-1111
    • /
    • 2011
  • This paper investigates the filtered velocity feedback(FVF) controller for the reduction of the acoustic power radiated from a clamped beam. The instability problem due to the non-collocated sensor/actuator configuration when using PZT actuator should be sorted out. The roll-off property of the FVF controller at high frequency helps to alleviate the instability. The dynamics of clamped beams under forces and moments pair and the FVF controller are first formulated. The formulation of the sound radiated power is followed. The open loop transfer function(OLTF) synthesized with 100 modes is used to determine the stability of the control system. The control performance is finally estimated. The levels of the vibration and the sound radiated power are reduced in the wide bandbelow the tuning mode of the FVF controller.

Vibration Analysis of Plates with Openning about Variation Ratio (변단면률의 변화에 대한 개구부를 갖는 판의 진동해석)

  • Kim, Il-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1177-1180
    • /
    • 2007
  • This paper has the objects of deciding dynamic instability regions of thick plates by finite element method and providing kinematic design data for mats and slabs of building structures. In this paper, dynamic stability analysis of tapered opening thick plate is done by use of Serendipity finite element with 8 nodes considering shearing strain of plate. To verify this finite element method, buckling stress and natural frequencies of thick pate with or without in-plane stress are compared with existing solutions. The results are as follow that this finite element solutions with $4{\times}4$ meshes are shown the error of maximum 0.56% about existing solutions, and obtained dynamic instability graph according with variation of opening positions.

  • PDF

Jet-Flow-Induced Vibration of Tube Arrays (제트유동에 의한 튜우브 집합체의 진동 연구)

  • Lee, Hae;Chang, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 1986
  • This paper presents a study on jet-flow-induced vibration, which has been one of the main causes of fuel damage in many pressurized water reactors. A systematic investigation was carried out experimently to identify the mechanism of jet-flow-induced vibration and to provide a design guide. Fluidelastic instability occurs when the jet velocity exceeds a critical value. The threshold of instability is given by V/f$_{n}$D=K.root.(D/h)(m$_{0}$.delta.$_{0}$/.sigma.D$^{2}$), where K is a stability constant. The effect of axial flow velocity and stand-off distance of a tube array on the stability of the array were investigated. A design guide is proposed.posed.