• 제목/요약/키워드: Instability Criterion

검색결과 117건 처리시간 0.022초

An instability criterion for viscoelastic flow past a confined cylinder

  • Dou, Hua-Shu;Phan-Thien, Nhan
    • Korea-Australia Rheology Journal
    • /
    • 제20권1호
    • /
    • pp.15-26
    • /
    • 2008
  • It has been known that there is a viscoelastic instability in the channel flow past a cylinder at high Deborah (De) number. Some of our numerical simulations and a boundary layer analysis indicated that this instability is related to the shear flow in the gap between the cylinder and the channel walls in our previous work. The critical condition for instability initiation may be related to an inflection velocity profile generated by the normal stress near the cylinder surface. At high De, the elastic normal stress coupling with the streamline curvature is responsible for the shear instability, which has been recognized by the community. In this study, an instability criterion for the flow problem is proposed based on the analysis on the pressure gradient and some supporting numerical simulations. The critical De number for various model fluids is given. It increases with the geometrical aspect ratio h/R (half channel width/cylinder radius) and depends on a viscosity ratio ${\beta}$(polymer viscosity/total viscosity) of the model. A shear thinning first normal stress coefficient will delay the instability. An excellent agreement between the predicted critical Deborah number and reported experiments is obtained.

A Study on the Instability Criterion for the Stratified Flow in Horizontal Pipe at Cocurrent Flow Conditions

  • Sung, Chang-Kyung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.463-468
    • /
    • 1997
  • This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow, Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al.[1] experimental data of pipes, it is shown that they are in good agreement with data.

  • PDF

Aerodynamic behaviour of an inclined circular cylinder

  • Cheng, Shaohong;Larose, Guy L.;Savage, Mike G.;Tanaka, Hiroshi
    • Wind and Structures
    • /
    • 제6권3호
    • /
    • pp.197-208
    • /
    • 2003
  • Galloping instability of dry inclined cables of cable-stayed bridges has been reported by Japanese researchers. A suggested stability criterion based on some experimental studies in Japan implies that many of stay cables would be expected to suffer galloping instability, which, if valid, would cause serious difficulty in the design of cable-stayed bridges. However, this is not the case in reality. Thus, it is practically urgent and necessary to confirm the validity of this criterion and possible restriction of it. In the present study, a 2D sectional cable model was tested in the wind tunnel, and effects of various physical parameters were investigated. It is found that the stability criterion suggested by Japanese researchers is more conservative than the results obtained from the current study.

소성불안정성에 의한 관재 하이드로포밍 공정에서의 터짐 불량 예측 (A Prediction of Bursting Failure in Tube Hydroforming Process Based on Plastic Instability)

  • 김상우;김정;박훈재;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.210-213
    • /
    • 2004
  • Based on plastic instability, analytical prediction of bursting failure on tube hydroforming processes under combined internal pressure and independent axial feeding is carried out. Bursting is irrecoverable phenomenon due to local instability under excessive tensile stresses. In order to predict the bursting failure, three different classical necking criteria such as diffuse necking criterion for sheet and tube, local necking criterion for sheet are introduced. The incremental theory of plasticity fur anisotropic material is adopted and then the hydroforming limit and bursting failure diagram with respect to axial feeding and hydraulic pressure are presented. In addition, the influences of the material properties such as anisotropy parameter, strain hardening exponent on bursting pressure are investigated. As results of the above approach, the hydroforming limit in view of bursting failure is verified with experimental results.

  • PDF

PLIF 및 자발광 계측을 이용한 이중선회 가스터빈 연소기에서 연소불안정 모드 연구 (A Study of Combustion Instability Mode in Dual Swirl Gas Turbine Combustor by PLIF and Chemiluminescence Measurement)

  • 최인찬;이기만
    • 한국연소학회지
    • /
    • 제19권1호
    • /
    • pp.29-38
    • /
    • 2014
  • This paper described an experimental investigations of combustion instability mode in a lean premixed dual swirl combustor for micro-gasturbine system. When such the instability occurs, a strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave which results in a loud, annoyed sound and may also lead a structural damage to the combustion chamber. The detailed period of flame behavior and heat release in combustion instability mode have been examined with high speed OH and CH-PLIF system and $CH^*$ chemiluminescence measurement, flame tomography with operated at 10 kHz and 6 kHz each. Experiment results suggest that unstable flame behavior has a specific frequency with 200 Hz and this frequency is accords with about 1/2 sub-harmonic of combustor resonance frequency, not fundamental frequency. This is very interesting phenomenon that have not reported yet from other previous works. Therefore, when a thermo-acoustic instability with Rayleigh criterion occurs, the fact that the period of heat release and flame behavior are different each other was proposed for the first time through this work.

관형 연소기의 열 음향학적 특성에 관한 실험적 연구 (Characteristics of thermoacoustic oscillation in ducted flame burner)

  • 조상연;이수갑
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.985-991
    • /
    • 1997
  • Combustion instability is a common phenomenon in a ducted flame burner and is known as accompanying low frequency oscillation. This is due to the interaction between unsteady heat release rate and sound pressure field, that is, thermoacoustic feedback. In Rayleigh criterion, combustion instability is triggered when the heat addition is in phase with acoustic oscillation. A Rijke type burner with a pre-mixed flame is built for investigating the effect of Reynolds number and equivalence ratio on thermoacoustic oscillation. The results suggest that the frequency of max, oscillation is dependent on Reynolds number and equivalence ratio whereas its magnitude is not a strong function of these two parameters.

  • PDF

네킹발생조건에 의한 관재 액압성형 공정에서의 터짐 불량 예측 (A Prediction of Bursting Failure in Tube Hydroforming Process Based on Necking Conditions)

  • 김상우;김정;박훈재;강범수
    • 소성∙가공
    • /
    • 제13권7호
    • /
    • pp.629-634
    • /
    • 2004
  • Based on plastic instability, analytical prediction of bursting failure on tube hydroforming processes under combined infernal pressure and independent axial feeding is carried out. Bursting is irrecoverable phenomenon due to local instability under excessive tensile stresses. In order to predict the bursting failure, three different classical necking criteria such as diffuse necking criterion for sheet and tube, local necking criterion for sheet are introduced. The incremental theory of plasticity for anisotropic material is adopted and then the hydroforming limit and bursting failure diagram with respect to axial feeding and hydraulic pressure are presented. In addition, the influences of the material properties such as anisotropy Parameter, strain hardening exponent and strength coefficient on bursting Pressure are investigated. As results of the above approach, the hydroforming limit in view of bursting failure is verified with experimental results.

열간 후방압출된 Ti-6Al-4V 튜브의 성형결함 해석 (Assessement of Forming Defects in Hot Backward Extruded Ti-6Al-4V Tube)

  • 염종택;심인규;나영상;박노광;홍성석;심인옥
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.347-350
    • /
    • 2003
  • The metal forming behavior and defect formation in Ti-6Al-4V tube during hot backward extrusion were investigated. To predict the forming-defects such as shear band, inner cracks or surface cracks, dynamic material model(DMM) including Ziegler's instability criterion and modified Cockcroft-Latham fracture criterion(C-L model) were used. These models were coupled to the internal variables generated from FE analysis. The chilling effect and friction indicated a great influence on the deformation mode of the tube and the formation of surface cracks. The simulation results for the backward extrusion were compared with the experimental observations.

  • PDF

GIS와 지구통계학을 이용한 충주호 남부지역의 광역적인 사면안정평가 (Regional Evaluation of Slope Stability by Using GIS and Geostatistics Around the Southern Area of Chungju Lake)

  • 문상기
    • 자원환경지질
    • /
    • 제33권2호
    • /
    • pp.117-128
    • /
    • 2000
  • Regional evaluations of slope stability by the failure criterion and by environmental geological factors were conducted. The failure criterion is the general conditions for plane failure which consider the geometrical conditions between geological discontinuities and topographical slope planes. The factor focused in this condiction is dip and dip direction. Geostatics, named semivariogram was used for establishing structural domains in slope stability evaluation by the failure criterion. The influential range was calculated to 6 km in the case of dip direction of dominant joint set and 7 km in the case of dip of the same dominant joint set. Then applying this failure criterion to the study area produced a slope stability map using the established domains and slopes generated by TIN module of ARC/INFO GIS. This study considered another regional slope stability analysis. 5 failure-driven factors 9the unstable slope map, geology, engineering soil, groundwater, and lineament density) were selected and used as data coverages for regional slope stability evaluation by geoenvironmental factors. These factors were weighted and overlayed in GIS. From the graph of cumulatave area (%) and instability index, finding critical points classified the instability indices. The most unstable slopes are located in the southern area of Mt. Eorae, Dabul-ri, and the eastern area of Junkok-ri in the first area is plane failure. Also, the expected orientations of failure are 59/338 and 86/090 (dip/dip direction).

  • PDF

습윤상태를 고려한 불포화 토사사면의 불안정성 해석 (Instability Analysis of Unsaturated Soil Slope Considering Wet Condition)

  • 김용민;김재홍
    • 대한토목학회논문집
    • /
    • 제33권4호
    • /
    • pp.1489-1498
    • /
    • 2013
  • 본 연구에서는 불포화 사면에서 선행강우의 영향을 고려하고자 지반의 초기 포화도를 3가지(36, 51, 77%)로 설정하여 수리학적-역학적 동시 유한요소해석(monolithically coupled finite element analysis)을 수행하였다. 선행강우에 의한 불포화 사면의 불안정성은 사면 내 모관흡수력 분포와 사면표층의 변위를 통하여 확인할 수 있다. 또한 Drucker-Prager model의 항복경계기준(trial failure criterion)을 적용하여 강우 침투에 의한 불포화 사면의 탄성 및 소성거동을 파악하였다. 그 결과, 선행강우에 의한 지반의 초기 포화도가 클수록 강우에 의한 변위가 크게 발생하며 모관흡수력 또한 감소한다. 특히, 모관흡수력은 지반이 건조할수록 빠르게 감소하며, 초기에 동일한 모관흡수력을 갖는 사면표층에서 포화도가 작은 지반일수록 더 빠른 모관흡수력 감소를 보였다. 풍화토의 탄성과 소성거동을 구분하기 위해 사용된 Drucker-Prager model을 통해 사면 파괴가 시작되는 항복경계지점을 확인 할 수 있었다.