• Title/Summary/Keyword: Inside-Out Approach

Search Result 65, Processing Time 0.027 seconds

The Structural Reinforcement Design of Firefighter Assistance Robots for Improving the Impact Resistance (소방관 보조로봇 플랫폼의 내충격성능 향상을 위한 구조 보강 설계)

  • Shin, Dong-Hwan;Kim, Yoon-Gu;An, Jinung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.5
    • /
    • pp.273-280
    • /
    • 2011
  • In this paper, we describe the structural reinforcement approach of the throwing-type firefighter assistance robot which can be thrown into a fire site to monitor inside the place and search trapped people while ensuring a firefighter's safety. The reinforcement design is focused on high strength with low weight for the robot. The in-depth structural analysis of the platform is carried out to track down the weakest part, especially with the 1.8m height of drop test. The analysis is verified by comparing with the 1.8m height of the drop test of the throwing-type firefighter assistance robot. The optimal approach for improving the strength of the weakest part aims at topological equivalent and equivalently stress distributed shape.

A Study on the Reduction of Entry Loss by Inner Structure in Square Hood in Industrial Ventilation System (산업환기시설에서 사각형 후드의 내부 설치에 의한 유입손실 감소에 관한 연구)

  • Bae, Hyun-Joo;Yang, Won-Ho;Kim, Jong-Oh;Son, Bu-Soon
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.27-34
    • /
    • 2003
  • An objective of local exhaust hood design is to design the hood to operate as efficiently as possible. The greatest loss normally occurs at the entrance to the duct, due to the vena contracta in the throat of the duct. This can be accomplished by minimizing the loss that results from the vena contracta. There have been little studied to be cost-effective approach as installing simple instrument inside the throat of the hood. The aims of this paper were to minimize entry loss using inner square, and to measure the effect of inner square when installed inside hood throat. The results of this study were as follows; First, the magnitude of vena contracta could be considered as the difference between direct measured velocity and calculated velocity, which is from Bernoulli theory. In circle hood, calculated velocity and direct measured velocity were 10.7m/sec and 10.3n/sec, respectively. And the calculated velocity and direct measured velocity in square hood were 7.7m./sec and 6.5m/sec, respectively. Second, effect of inner square by width was carried out. The widths of inner square were L/1(18cm), L/2(9cm), L/3(6cm) and L/6(3cm). In case inner square was installed with 3cm width, the entry of coefficient was 0.93, comparing with 0.85 of entry of coefficient of general hood. Third, effect of inner square by distance from hood inside surface to inner square was carried out. The distances were L/3(6cm), L/6(3cm), L/9(2cm) and L/l8(1cm). In case the distance was 3cm the best efficiency was shown (Ce= 0.93). Fourth, effect of inner square by location from hood entry to duct inside was carried out. The locations of inner square were entry(0cm), L/6(3cm), L/3(6cm), L/2(9cm) and L/l(12cm). In case the location was 0cm, 3cm and 6cm the entry of coefficients were 0.93, 0.92 and 0.90, respectively.

VirtAV: an Agentless Runtime Antivirus System for Virtual Machines

  • Tang, Hongwei;Feng, Shengzhong;Zhao, Xiaofang;Jin, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5642-5670
    • /
    • 2017
  • Antivirus is an important issue to the security of virtual machine (VM). According to where the antivirus system resides, the existing approaches can be categorized into three classes: internal approach, external approach and hybrid approach. However, for the internal approach, it is susceptible to attacks and may cause antivirus storm and rollback vulnerability problems. On the other hand, for the external approach, the antivirus systems built upon virtual machine introspection (VMI) technology cannot find and prohibit viruses promptly. Although the hybrid approach performs virus scanning out of the virtual machine, it is still vulnerable to attacks since it completely depends on the agent and hooks to deliver events in the guest operating system. To solve the aforementioned problems, based on in-memory signature scanning, we propose an agentless runtime antivirus system VirtAV, which scans each piece of binary codes to execute in guest VMs on the VMM side to detect and prevent viruses. As an external approach, VirtAV does not rely on any hooks or agents in the guest OS, and exposes no attack surface to the outside world, so it guarantees the security of itself to the greatest extent. In addition, it solves the antivirus storm problem and the rollback vulnerability problem in virtualization environment. We implemented a prototype based on Qemu/KVM hypervisor and ClamAV antivirus engine. Experimental results demonstrate that VirtAV is able to detect both user-level and kernel-level virus programs inside Windows and Linux guest, no matter whether they are packed or not. From the performance aspect, the overhead of VirtAV on guest performance is acceptable. Especially, VirtAV has little impact on the performance of common desktop applications, such as video playing, web browsing and Microsoft Office series.

Efficiency Evaluation of Operating Railroad with Subway Cabin Air Purifier (도시철도 객실 공기정화장치(SCAP)의 운행차량 효율평가)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jong-Bum;Cho, Goan-Hyun;NamGoong, Seok;Lee, Joo-Yeol;Kim, Tae-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1303-1308
    • /
    • 2011
  • In the modern society various types of transportation mode are utilized, among them the subway system is the one of the main transportation mode which more than 7.21 million people ride a day. Because of interests on the indoor air quality (IAQ) of underground public facilities, concerns on IAQ of subway system by many people are increasing. There are several approach to improve IAQ of subway station, such as installing platform screen door (PSD), frequent tunnel washing-out, and etc, however there has not been any attempt to improve IAQ of subway cabin inside. Most technologies for removing airborne particulate matters are known to be difficult to adopt on the subway cabin since the problem of maintenance cost. Therefore, the ultimate object of this study is a practical development of cabin air cleaning system which can reduce the concentration of airborne particles and harmful gases at the same time. The subway cabin air purifier (SCAP) was developed for removing particulate matters and gases pollutants inside a cabin. The whole system was designed and the roll-filter device was manufactured based on numerical prediction results. It is expected that SCAP could reduce indoor air pollutants in the subway cabin practically and it can be applied to other part of transportation vehicles.

  • PDF

Long-Term Thermal Conductivity Prediction of Polyurethane Foam Applying Precision Mass Spectrometer for Cell Gas Analysis (정밀질량분석기를 활용한 우레탄폼의 장기열전도도 예측을 위한 분석기법)

  • Kim, Jin-Seok;Chun, Jong-Han;Lee, Jin-Bok;Lee, Hyo-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.679-686
    • /
    • 2010
  • A proprietary device is adopted to break out the membrane of cell in the rigid polyurethane foam. As it is known, the membrane of cell is hardly tearing-off thoroughly in a mechanical way due to both its elastic characteristic and micro sized pores. In this study, a novel experimental approach is introduced to burst out all gases inside the cells of the rigid polyurethane foam by abrasively grinding micro-cells completely into fine powder. The biggest advantage of this approach is to be capable of releasing all gases out from the cell even in the micro pores. As clearly reflected from the repeatability, the accuracy of the result is highly improved and high confidence in the data sets as well. For the measurements of not only gas composition but partial pressure for each gas simultaneously as well, a precision gas mass spectrometer is used in-line directly to the abrasive grinding device. To control the starting point of the polyurethane foam, all samples were prepared on site in the laboratory. Manufactured time is one of the most critical factors in characterization of cell gas composition because it is known that one of gas composition, especially, carbon dioxide, is diffused out dramatically in a short period of time as soon as it is foamed.

SIMULATION OF PARTICLE DISPERSION AND DEPOSITION IN FLOW AROUND TWO CIRCULAR CYLINDERS IN A SIDE-BY-SIDE ARRANGEMENT (병렬로 배열된 두 개의 원형 실린더 유동에서 입자의 분산과 부착 해석)

  • Hwang, Dongjun;Kim, Dongjoo
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.81-89
    • /
    • 2016
  • Numerical simulations are carried out for the fluid flow and particle transport around two nearby circular cylinders in a side-by-side arrangement. The present study aims to understand the effects of the particle Stokes number and the spacing between two cylinders on particle dispersion and deposition characteristics. Simulations are based on an Eulerian-Lagrangian approach where the motion of particles is calculated by a Lagrangian approach based on one-way coupling. Results show that the flow structure is very different depending on the cylinder spacing, eventually affecting the overall pattern of particle dispersion significantly. It is also found that particles with smaller Stokes number tend to be distributed more uniformly in the wake of two cylinders, being located even inside the vortex cores. Meanwhile, particle deposition is analyzed in terms of the deposition efficiency and deposition location. The deposition efficiency of particles strongly depends on the Stokes number, whereas it is slightly affected by the cylinder spacing. The deposition location gets wider as the Stokes number increases, and it becomes asymmetric about the center of each cylinder as the cylinders get close.

Performance Prediction of Eckardt's Impeller based on The Development of compressible Navier-Stokes Solver (압축성 유동 해석 프로그램 개발을 통한 Eckardt 임펠러의 성능 예측)

  • Kwak, Seung-Chul
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.223-232
    • /
    • 1998
  • To investigate the flow inside the centrifugal impeller, computer program which can solve Three-dimensional compressible turbulent flow has been developed. The Navier-Stokes equations were chosen as the governing equation for viscous flow while Euler equations for inviscid case. Time marching method was incorporated with the Flux Difference Splitting method suggested by Roe to capture the steep gradients such as a shock. For high order of accuracy, MUSCL approach was adopted while differentiable limiter to ensure TVD property. For turbulence closure, Baldwin- Lomax model was applied due to its simplicity. To demonstrate the capabilities of present program, several validation problems have been solved and compared with experiments and other available data. From the above calculations generally good agreements were obtained. Finally, the developed code was applied to Eckardt's impeller and the performance prediction was carried out. Some important aspects on boundary condition for successful simulation were discussed and the remedy was also introduced.

  • PDF

Sloshing Analysis of a Simple Tank using Fluid-structure Interface Method (유체-구조 연성 방법에 의한 단순 탱크 슬로싱 해석)

  • Kang, Sung-Jong;Seo, Hong-Jae;Kim, Byung-Joo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • Fuel tank sloshing noise of vehicle is caused by flow impact on the tank wall during sudden braking, and the sloshing vibration of tank wall is a coupled phenomenon of the fuel inside tank and tank wall structure. Therefore, Fluid-Structure Interface(FSI) analysis technology should be adopted to predict accurately the sloshing vibration. In this study, FSI approach was employed to analyze sloshing phenomenon for a simple tank model with velocity change of the actual vehicle test. First, the simulated results for rigid tank model were compared with those for deformable tank model. Next, influence of baffle location and shape of baffle holes on the acceleration magnitude and the maximum stress of tank wall was investigated. In addition, sloshing analysis for tank with another baffle type was carried out.

Finite Element Analysis of the Composite Box Girder (합성상형의 유한요소 해석)

  • 이정기;조진구;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.145-152
    • /
    • 1987
  • This paper suggests a method for the analysis of box girders which are subject to the membrane and the plate bending actions, Moreover, the method is applied to the box girders under distributed loads which have various geometrical types of cross sections and are made out of different materials. The approach is based on the finite element technique in which the structure is considered to be a spatial assemblage of flat plate elements and the deformations of the plates are to be approximated with 9-noded parabolic isoparametric elements. The results are summarized as follows. 1.In all models, the larger the widths of top flange inside of web are, the larger the vertical deflections are. 2.The maximum transverse and longitudinal moments in the composite box girders are judged to be larger than those in the RC box girders. 3.The transverse and the longitudinal moments in top flange of composite box. girders are larger than those in that of the RC box girders. 4.The transverse and longitudinal moments in web and bottom flange of the composite box girders are estimated to be very small in compare to those in web and bottom flange of the RC box girders.

  • PDF

Panfacial Bone Fracture and Medial to Lateral Approach

  • Kim, Jiye;Choi, Jin-Hee;Chung, Yoon Kyu;Kim, Sug Won
    • Archives of Craniofacial Surgery
    • /
    • v.17 no.4
    • /
    • pp.181-185
    • /
    • 2016
  • Panfacial bone fracture is challenging. Even experienced surgeons find restoration of original facial architecture difficult because of the severe degree of fragmentation and loss of reference segments that could guide the start of facial reconstruction. To restore the facial contour, surgeons usually follow a general sequence for panfacial bone reduction. Among the sequences, the bottom-to-top and outside-in sequence is reported to be the most widely used in recent publications. However, a single sequence cannot be applied to all cases of panfacial fractures because of the variations in panfacial bone fracture patterns. In this article, we intend to find the reference and discuss the efficacy of inside-out sequence in facial bone fracture reconstruction.