• Title/Summary/Keyword: Inside diameter

Search Result 736, Processing Time 0.026 seconds

Hydraulic Design of Natural Gas Transmission Pipeline in the Artic Area (극한지 장거리 천연가스 배관의 유동 설계)

  • Kim, Young-Pyo;Kim, Ho-Yeon;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • Hydraulic analysis of the natural gas transmission pipeline is to determine whether adequate flow can be sustained throughout the design life of pipeline under all expected flow conditions. Many factors have to be considered in the hydraulic design of long-distance pipelines, including the nature, volume, temperature and pressure of fluid to be transported, the length and elevation of pipeline and the environment of terrain traversed. This study reviewed the available gas operation data provided by pipeline construction project in the arctic area and discussed the gas properties such as viscosity and compressibility factor that influence gas flow through a pipeline. Pipeline inside diameter was calculated using several flow equations and pipeline wall thickness was calculated from Barlow's equation applying a safety factor and including the yield strength of the pipe material. The AGA flow equation was used to calculate the pressure drop due to friction, gas temperature and pipeline elevation along the pipeline. The hydraulic design in this study was compared with the report of Alaska Pipeline Project.

Theoretical and Computational Analyses of Bernoulli Levitation Flows (베르누이 부상유동의 이론해석 및 수치해석 연구)

  • Nam, Jong Soon;Kim, Gyu Wan;Kim, Jin Hyeon;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.629-636
    • /
    • 2013
  • Pneumatic levitation is based upon Bernoulli's principle. However, this method is known to require a large gas flow rate that can lead to an increase in the cost of products. In this case, the gas flow rate should be increased, and the compressible effects of the gas may be of practical importance. In the present study, a computational fluid dynamics method has been used to obtain insights into Bernoulli levitation flows. Three-dimensional compressible Navier-Stokes equations in combination with the SST k-${\omega}$ turbulence model were solved using a fully implicit finite volume scheme. The gas flow rate, workpiece diameter,and clearance gap between the workpiece and the circular cylinder were varied to investigate the flow characteristics inside. It is known that there is an optimal clearance gap for the lifting force and that increasing the supply gas flow rate results in a larger lifting force.

A Pd Doped PVDF Hollow Fibre for the Dissolved Oxygen Removal Process

  • Batbieri G.;Brunetti A.;Scura F.;Lentini F.;Agostino R G.;Kim, M.J.;Formoso V.;Drioli E.;Lee, K.H.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • In semiconductor industries, dissolved oxygen is one of the most undesirable contaminants of ultrapure water. A method for dissolved oxygen removal (DOR) consists in the use of polymeric hollow fibres, loaded with a catalyst and fed with a reducing agent such as hydrogen. In this work, PVDF hollow fibres loaded with Pd were characterized by means of perporometry, scanning electron microscopy (SEM), energy dispersive X-ray (EDX). The hollow fibre analyzed shows a five-layer structure with remarkable morphological differences. An estimation of pore diameters and their distribution was performed giving a mean pore diameter of 100 nm. The permeance and selectivity of the fibres were measured using $H_2,\;N_2,\;O_2$ as single gases, at different operating conditions. An $H_2$ permeance of $37 mmol/m^2s$ was measured and $H_2/O_2$ and $H_2/N_2$ selectivities of ca. 3 were obtained. $H_2$ permeance was 1/3 when a water stream flows in the shell side. Catalytic fibrebehaviour was simulated using a mathematical model for a loop membrane reactor, considering only $O_2$ and $H_2$ diffusive transport inside the membrane and their catalytic reaction. Dimensionless parameters such as the Thiele modulus are employed to describe the system behaviour. The model agrees well with the experimental reaction data.

Leaching Characteristics on Clay Ground induced by Artesian Pressure (피압에 의한 점토 지반의 용탈 특성)

  • Yun, Daeho;Kim, Yuntae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.97-104
    • /
    • 2016
  • This paper performed consolidation tests on soft ground with and without artesian pressure conditions to find out characteristics of leaching effects using two types of one-dimensional column equipment(height : 1,100mm, outer diameter : 250mm). Artesian pressure of 5.5kPa was applied to the bottom of soft ground inside column equipment. Distribution of salinity and shear strength with soil depth were measured after the consolidation test. From the results, it was found that distribution of undrained shear strength and salt concentrations were similar at the top of clay ground irrespective of artesian pressure condition. However, at the bottom of clay ground, the values of undrained shear strength and salt concentration under artesian pressure were lower than those without artesian pressure. This result indicates that structure of soft soil with artesian pressure was weakened by salt leaching. Electronic resistance results showed that void ratio under artesian pressure condition was more reduced than that without artesian pressure condition.

Simulation of Resonance Shift and Quality Factor for Opto-fluidic Ring Resonator (OFRR) Biosensors (광-유체링공진기(OFRR) 바이오센서에 관한 공진이동과 양호도의 시뮬레이션)

  • Cho, Han-Keun;Han, Jin-Woo;Yang, Gil-Mo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • In this work, the finite element method was used to investigate the shifts of resonance frequencies and quality factor of whispering-gallery-mode (WGM) for an opto-fluidic ring resonator (OFRR) biosensor. To describe the near-field radiation transfer, the time-domain Maxwell's equations were employed and solved by using the in-plane TE wave application mode of the COMSOL Multiphysics with RF module. The OFRR biosensor model under current study includes a glass capillary with a diameter of 100 mm and wall thickness of 3.0 mm. The resonance energy spectrum curves in the wavelength range from 1545 nm to 1560 nm were examined under different biosensing conditions. We mainly studied the sensitivity of resonance shifts affected by changes in the effective thickness of the sensor resonator ring with a 3.0 mm thick wall, as well as changes in the refractive index (RI) of the medium inside ring resonators with both 2.5 mm and 3.0 mm thick walls. In the bulk RI detection, a sensitivity of 23.1 nm/refractive index units (RIU) is achieved for a 2.5 mm thick ring. In small molecule detection, a sensitivity of 26.4 pm/nm is achieved with a maximum Q-factor of $6.3{\times}10^3$. These results compare favorably with those obtained by other researchers.

Numerical Analysis of the Wavelength Dependence in Low Level Laser Therapy (LLLT) Using a Finite Element Method

  • Yoon, Jin-Hee;Park, Ji-Won;Youn, Jong-In
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.77-83
    • /
    • 2010
  • Purpose: The aim of this study was to do numerical analysis of the wavelength dependence in low level laser therapy (LLLT) using a finite element method (FEM). Methods: Numerical analysis of heat transfer based on a Pennes' bioheat equation was performed to assess the wavelength dependence of effects of LLLT in a single layer and in multilayered tissue that consists of skin, fat and muscle. The three different wavelengths selected, 660 nm, 830 nm and 980 nm, were ones that are frequently used in clinic settings for the therapy of musculoskeletal disorders. Laser parameters were set to the power density of 35.7 W/$cm^2$, a spot diameter of 0.06 cm, and a laser exposure time of 50 seconds for all wavelengths. Results: Temperature changes in tissue based on a heat transfer equation using a finite element method were simulated and were dominantly dependent upon the absorption coefficient of each tissue layer. In the analysis of a single tissue layer, heat generation by fixed laser exposure at each wavelength had a similar pattern for increasing temperature in both skin and fat (980 nm > 660 nm > 830 nm), but in the muscle layer 660nm generated the most heat (660 nm ${\gg}$ 980 nm > 830 nm). The heat generation in multilayered tissue versus penetration depth was shown that the temperature of 660 nm wavelength was higher than those of 830 nm and 980 nm Conclusion: Numerical analysis of heat transfer versus penetration depth using a finite element method showed that the greatest amount of heat generation is seen in multilayered tissue at = 660 nm. Numerical analysis of heat transfer may help lend insight into thermal events occurring inside tissue layers during low level laser therapy.

The characteristics of DROS magnetometer and MCG measurement (DROS 자력계의 동작특성 및 심자도 측정)

  • Kang, C.S.;Lee, Y.H.;Kwon, H.;Kim, J.M.;Yu, K.K.;Park, Y.K.;Lee, S.G.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.164-168
    • /
    • 2007
  • We developed a SQUID magnetometer based on Double Relaxation Oscillation SQUID(DROS) for measuring magnetocardiography(MCG). Since DROS provides a 10 times larger flux-to-voltage transfer coefficient than the conventional DC-SQUID, simple flux-locked loop electronics could be used for SQUID operation. Especially, we adopted an external feedback to eliminate the magnetic coupling with adjacent channels. When the DROS magnetometer was operated inside a magnetically shielded room, average magnetic field noise was about 5 $fT/^{\surd}Hz$ at 100 Hz. Using the DROS magnetometer, we constructed a multichannel MCG system. The system consisted of 61 magnetometers are arranged in a hexagonal structure and measures a vertical magnetic-field component to the chest surface. The distance between adjacent channels is 26 mm and the magnetometers cover a circular area with a diameter of 208 mm. We recorded the MCG signals with this system and confirmed the magnetic field distribution and the myocardinal current distribution.

  • PDF

Study on optimum structure of air-lift bio-reactor using numerical analysis of two-phase flow (이상 유동 수치해석을 이용한 기포 구동 생물 반응기 내부 최적 구조에 관한 연구)

  • Kim, San;Chung, Ji Hong;Lee, Jae Won;Sohn, Dong Kee;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.24-31
    • /
    • 2019
  • Recently, an air-lift bio-reactor operated by micro bubbles has been utilized to product hydrogen fuel. To enhance the performance, characteristics of hydrodynamics inside the bio-reactor were analyzed using a numerical simulation for two-phase flow. An Eulerian model was employed for both of liquid and gas phases. The standard k-ε model was used for turbulence induced by micro bubbles. A Population Balance Model was employed to consider size distribution of bubbles. A hollow cylinder was introduced at the center of the reactor to reduce a dead area which disturbs circulation of CO bubbles. An appropriate diameter of the draft tube and hollow cylinder were optimized for better performance of the bio-reactor. The optimum model could be obtained when the cross-sectional area ratio of the hollow cylinder to the reactor, and the width ratio of the riser to the downcomer approached 0.4 and 3.5, respectively. Consequently, it is expected that the optimum model could enhance the performance of the bio-reactor with the homogeneous distribution and higher density of CO, and more effective mixing.

Developmental and Morphological Characterization of the Wild Silkmoth, Actias gnoma, in Korea

  • Ryu, Chun-Woo;Kim, Mi-Ae;Park, Nam-Sook;Sohn, Hung-Dae;Park, Sang-Bong;Lee, Ho-Oung;Moon, Jae-Yu;Seong, Su-Il
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.1
    • /
    • pp.79-83
    • /
    • 2002
  • The wild silkmoth, Actias gnoma was firstly collected at Suwon located in the middle part of Korea. The developmental and morphological characteristics of A. gnoma reared under the laboratory conditions were analysed. The egg shape was shorter elliptic. The major and minor diameter of the eggs were 2.04 mm and 1.83 mm, respectively. White mucous material was remained inside the eggs after hatching. Also, the body color of the larvae was completely changed from dark brown to light yellowish-green at the 3rd instar, but it did not occur until pupation. In the feeding test on several plants, the oak tree, Quercus acutissima, was newly identified as a host plant. The final larval instar was mostly 6th, but in some larvae it was 7th. A few of larvae ate their own casts just after ecdysis. The whole larval duration ranged from 45 to 59 days. The single cocoon weight, cocoon shell weight and cocoon shell percentage were 1.65 g,31.3 cg and 18.9%, respectively, The cocoon shape and color were spindle and light brown, respectively. The morphology of the silk gland was greatly different from those of Bombyx mori, Antheraea yamamai and Antheraea peryi: the thickness of the middle and posterior silk glands was almost identical.

Guided Wave Mode Selection and Flaw Detection for Long Range Inspection of Polyethylene Coated Steel Gas Pipes (폴리에틸렌 코팅 가스배관의 광범위탐상을 위한 유도초음파 모드 선정 및 결함 검출)

  • Song, Sung-Jin;Park, Joon-Soo;Shin, Hyeon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.406-414
    • /
    • 2001
  • Ultrasonic guided waves were explored to apply them to the long range inspection of polyethylene coated steel gas pipes. The steel pipes have such dimensions as 190.7mm inside diameter and 5.3mm thickness. The outside surface of the pipe is coated by a polyethylene layer of $1.9{\pm}0.5mm$ thickness. Non-axisymmetric guided waves were excited on the outside surface of the polyethylene coated pipe by using a 0.5MHz transducer with a variable angle shoe. Frequency and phase velocity tuning was used to find optimum guided wave modes for the inspection. The dispersive characteristics of the modes were analyzed in time-frequency representation obtained by short time Fourier transforms. Sample results were presented for artificial defects such as wall thinning and hole.

  • PDF