• Title/Summary/Keyword: Inside diameter

Search Result 736, Processing Time 0.025 seconds

Heat transfer performance with different fills as volumetric air receivers for concentrated solar radiative energy (태양 복사에너지 충진재 변화에 따른 고온 태양열 공기식 흡수기의 열전달 성능 해석)

  • Lee, Ju-Han;Kim, Yong;Jeon, Yong-Han;Seo, Tae-Beom;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2007
  • The heat transfer characteristics of solar tower receivers are experimentally investigated with receiver shapes. Generally, these become different according to the shapes and materials of the volumetric air receiver. In order to study these effects, the apparatus adopting laminated mesh and honeycombs as the volumetric air receiver is proposed. The receiver consists of laminated mesh (diameter; 100 mm, thickness; 1 mm), honeycombs (diameter; 100 mm, thickness; 30 mm) inserted into ceramic tube (inside diameter; 100 mm, outside diameter; 120 mm, length: 1000 mm). To apply heat to the receiver, an electric heater is used. To find out the heat transfer characteristics of the laminated mesh, the air temperatures are obtained by installing 3 thermocouples on each layer, dividing ceramic tube into 4 layers. Also, a radiative shield is installed to measure the only air temperature. The data for laminated mesh and honeycomb thickness of 30, 60, 90 mm are obtained. The results show that the temperature of layer 3 is higher than those of layer 2 and layer 1.

Flow Condensation Heat Transfer Coefficients of R22 Alternative refrigerants in Aluminum Multi-Channel Tube (알루미늄 다채널 평판관내 R22 대체냉매의 흐름 응축 열전달 성능 비교)

  • Lee, Ki-Young;Lee, Min-Hang;Jung, Dong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.249-255
    • /
    • 2005
  • Flow condensation heat transfer coefficients(HTCs) of R22, R4IO, Propane(R290) were measured inside a horizontal 9 hole aluminum multi-channel flat tube. The main test section in the refrigerant loop was made of a 0.53 m long multi-channel flat tube of hydraulic diameter of 1.4 mm. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in qualities of 0.1 ${\sim}$ 0.9 at mass flux of $200{\sim}400$ $kg/m^2s$ and heat flux of $7.3{\sim}7.7$ $kW/m^2$ at the saturation temperature of $4^{\circ}C$. All popular heat transfer correlations in single-phase subcooled liquid flow and flow condensation originally developed for large single tubes predicted the present data of the multi channel flat tube within 25% deviation when effective heat transfer area was used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Hence, a modified correlation based on the present data was proposed which could be applied to small diameter tubes with effective heat transfer area. The correlation showed a mean deviation of less than 20% for all data.

  • PDF

Forced Convection Heat Transfer for Two Circular Tube Arrays with Annular Fins (환형휜이 부착된 두 개의 원형관 배열에 대한 강제대류 열전달)

  • Kim, Seung-iI;Park, Sang-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1093-1101
    • /
    • 2020
  • This study was carried out numerically to investigate the air flow and thermal performance around single and parallel fin-tube heat exchangers and the cooling performance of the fluid inside the heat exchangers. In this study, the air velocity(1~7m/s), the pitch of fin(4, 6.1, 8, 11.3, 18.3, 44mm) and the diameter of fin(31, 33, 35, 37, 39mm) were varied. The flow rate of the water at the fin-tube heat exchanger inlet is 89cc/min and the water temperature is 353K. The air temperature at the upstream region of the heat exchanger is 300K. flow rate of the water at the fin-tube heat exchanger inlet is 80cc/min and the water temperature is 353K. It was found that the air pressure drop around single and parallel fin-tube heat exchangers was highly dependent on the air velocity and the fin pitch, but was independent of the fin diameter. Also, it was shown that pressure drop increased more the parallel arrangements than in single heat exchanger. The temperature difference of water at the inlet and outlet of the heat exchanger depended on the air velocity, the fin pitch and the fin diameter, and it was found that the parallel arrangement method further reduced the temperature of water. It was shown that the Nusselt number increased as the Reynolds number and the fin pitch increased, and decreased as the fin diameter increased.

Derivation of Optimal Design Variables Considering Carbon Monoxide Emission Characteristics of Commercial Gas Stove Burners (업소용 가스레인지 버너의 일산화탄소 배출 특성을 고려한 최적 설계변수 도출)

  • Il Kon Kim;Taehoon Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Commercial gas stoves feed primary air to the burner and burn the fuel-air mixture in a partially premixed combustion. This mechanism produces carbon monoxide during combustion. In this study, design parameters of a commercial gas stove were optimized by considering the carbon monoxide emission. Gas consumption rate, carbon monoxide emission, and water boiling temperature as a heating performance were determined. Carbon monoxide emission was measured using a Korean Industrial Standards standard collector. Water boiling temperature was measured by first soaking the pot in water for approximately 10 min and then heating the pot filled with water. A thermocouple was installed inside the pot. Carbon monoxide increased as the nozzle diameter was increased and the burner-pot height was decreased. This result was due to the insufficient mixing between the fuel and air. Heating performance was enhanced when the nozzle diameter was increased and the burner-pot height was decreased. However, the heating performance deteriorated when the nozzle diameter was 1.8 mm and the burner-pot height was reduced to 50 mm. This phenomenon was due to the formation of a flame on the side of the pot. A merit factor was defined to find the optimal design parameters to satisfy gas consumption rate, carbon monoxide emission, and heating performance. Optimal design values were established to be a nozzle diameter of 1.5 mm and a burner-pot height of 60 mm.

CFD ANALYSIS FOR A PULSATILE FLOW AROUND A BODY INSIDE A BIFURCATED TUBE (분지관 내 물체 주위 맥동류에 대한 CFD 해석)

  • Hwang, D.Y.;Yoo, S.S.;Lee, M.S.;Han, B.Y.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.183-190
    • /
    • 2009
  • The objective of this study is to get simulation data about pulsatile flow around an interior solid body inside a bifurcated tube. All the processes were based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. The bifurcated tube models were drawn with the bifurcated angle of 45 degrees, considering Murray's law about the diameter ratio. With various locations of the object, the effects of flow on the drag were considered. For the pulsating flow condition, the velocity wave profile was given as the inlet boundary condition. To validate all the result, the simulation was compared with the existing data of the other papers first. Overall flow field of both data were similar, but there was some difference at a zero velocity. Therefore the next simulation was continued with the sine wave profiles where there is no negative flow, and then the data was compared with one of the pulmonary artery velocity where there is negative flow. The final process was to calculate flow variables such as the wall shear stress (WSS) and to compute the drag of the solid object.

  • PDF

Development of Differentially Driven Inpipe Inspection Robot for Underground Gas Pipeline (지하 매설 가스배관용 차동 구동형 배관검사 로봇의 개발)

  • No, Se-Gon;Ryu, Seong-Mu;Choe, Hyeok-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2019-2029
    • /
    • 2001
  • Up to now a wide variety of researches on inpipe inspection robots have been introduced, but it still seems to be difficult to construct a robot providing mobility sufficient to navigate inside the complicated configuration of underground pipelines. This paper introduces a robot called MRINSPECT IV(Multifunctional Robotic Crawler for inpipe inSPECTion IV) for the inspection of urban gas pipelines with a nominal 4-inch inside diameter. The proposed robot can freely move along the basic configuration of pipelines such as along horizontal or vertical pipelines. Moreover it can travel along reducers, elbows, and steer in the branches by modulating the speeds of driving modules. Especially, its capability for steering in tile three-dimensional pipeline configuration has a competative edge over the other ones and provides excellent mobility in navigation. Its critical points in the design and construction are introduced and results of experiments are given.

Thermal Performance of Air receiver with a Change of Flow direction for Dish Solar Collector (공기식 흡수기의 유동 방향에 따른 $5kW_t$급 접시형 태양열 집열기의 열성능 분석)

  • Seo, Joo-Hyun;Kang, Kyung-Moon;Lee, Ju-Han;Oh, Sang-June;Seo, Tae-Beom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.182-185
    • /
    • 2008
  • The thermal performance of air receiver with a change of flow direction for dish solar collector. This system is installed and operated in Incheon, Korea. The thermal capacity of the system is about 5 kW thermal. The aperture diameter of the cylindrical-shape receiver which is made of stainless steel is 100 mm, and the height is 210 mm. Experiments are being carried out to investigate the thermal performance variation of the receivers with several design parameters such as the shape of the receiver, the flow directions and the flow rate of air. First, air flows into the upper part of the receiver, which is the opposite side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 3 exits which are located near the aperture. Second, air flows into the backside of the receiver, Which is the forward side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 1 exit. The results show that the system efficiency and receiver efficiency increase as the volume flow rate increases as expected.

  • PDF

A Study of Prevention of Pipe Scale with Cu-Zn Metal Fiber (Cu-Zn Metal Fiber를 이용한 배관 스케일 방지에 관한 연구)

  • Lee, Sang-Ho;Kim, Jong-Hwa;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.70-75
    • /
    • 2010
  • Scale generation in the inside of a pipe IS restricted by reduction and oxidation(REDOX) reaction of alloyed metal of Cu-Zn. To measure the scale generating rate in the 1.67 mm of inside diameter of stainless steel tube, 300 ppm of $CaCO_3$ solution is circulated in the REDOX reactor and stainless steel tube in the order. In the case of $CaCO_3$ solution treated by REDOX reactor, flowing is maintained without plugging in the stainless steel tube, and the concentration of Cu and Zn in the circulating solution showed less than 1 ppm, which is equal to that of untreated by REDOX reactor. The crystal type of $CaCO_3$ generated by crystalline nucleus of Cu or Zn, mostly showed aragonite type.

Growth of superconducting $MgB_2$ fibers for wire applications

  • Kim J. H.;Yoon H. R.;Jo W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.1-3
    • /
    • 2005
  • Superconducting $MgB_2$ fibers are in-situ grown by a diffusion method. The fibers are prepared by exposing B filaments to Mg vapor inside a folded Ta foil over a wide range of temperature and growth time. The materials are sealed inside a quartz tube by gas welding. The as - grown fibers are characterized by scanning electron microscopy and energy dispersive x - ray analysis. The fibers have a diameter of about $110{\mu}m$. Surface morphology of the fibers looks dependent on growth temperature and mixing ratio of Mg and B. Radial distribution of Mg ions into B is observed and analyzed over the cross - sectional area. Transport properties of the $MgB_2$ fibers are examined by a physical property measurement system. The $MgB_2$ fibers grown at $900^{\circ}C$ for 2 hours show a superconducting transition at 39.8K with ${\Delta}T_c<$ 2.0 K. Resistance at room temperature $MgB_2$ is 3.745 $\Omega$ and residual resistivity ratio (RRR) is estimated as 4.723.

Experimental study for the pressure drop of R-22 and R-4O7C during the condensation in the micro-fin tubes (마이크로핀관내에서 R-22와 R-4O7C의 응축압력강하 특성에 관한 실험적 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.715-722
    • /
    • 2007
  • Experiments were conducted for the investigation of pressure drop inside horizontal micro-fin tubes during the condensation of R-22 and ternary refrigerant. R-407C(HFC-32/125/134a 23/25/62 wt%) as a substitute of R-22. The condenser is a double-tube and counterflow type heat exchanger which is consisted with micro-fin tubes having 60 fins with a length of 4000mm, outer diameter of 9.53mm and fin height of 0.2mm. The mass velocity varied from 102.1 to $301.0kg/(m^2{\cdot}s)$ and inlet quality was fixed as 1.0. From the experimental results. the pressure drop for R-407C was considerably higher than that for R-22. The value of PF(penalty factor) for both of refrigerants was not bigger than the ratio of micro-fin tube area to smooth tube area. Based on the experimental data. correlation was Proposed for the prediction of frictional pressure drop during the condensation of R-22 and R-407C inside horizontal micro-fin tubes.