• Title/Summary/Keyword: Inside diameter

Search Result 736, Processing Time 0.032 seconds

수평평활관내 탄화수소계 냉매의 응축전열 특성에 관한 연구 (Condensation heat transfer characteristics of hydrocarbon. refrigerants inside horizontal tubes)

  • 이용언;박승준;정진호;장승환;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 추계학술대회 논문집(Proceeding of the KOSME 2001 Autumn Annual Meeting)
    • /
    • pp.15-20
    • /
    • 2001
  • This study investigated the condensation heat transfer coefficients of R-22, R-290 and R-600a inside horizontal tube. Heat transfer measurements were peformed for smooth tube with outside diameter of 12.7 mm Condensation temperatures and mass velocity were ranged from 308 K to 323 K and $51kg/\textrm{m}^2s$s to $250kg/\textrm{m}^2s$, respectively. The test results showed that the local condensation heat transfer coefficients increased as the mass flux increased, and also the effects of mass velocity on heat transfer coefficients of R-290 and R-600a were less than R-22. Average condensation heat transfer coefficients of natural refrigerants were superior to that of R-22. The present results had a good agreement with Haraguchi's correlation.

  • PDF

Frictional Behavior of Solid and Hollow Cylinders in Contact Against a Porcine Intestine Specimen

  • Kim, Young-Tae;Kim, Dae-Eun;Park, Suk-Ho;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • 제7권2호
    • /
    • pp.51-55
    • /
    • 2006
  • In order to design an effective foot surface which can provide adequate friction for a self-propelled medical microrobot moving inside the small intestine, frictional mechanisms between the small intestine inner wall and the foot surface of the robot must be understood. In this paper, mechanical interlocking effect was considered to design the surface of the foot that can generate the desired frictional force. The concept of the design was derived from the hookworm that lives inside the small intestine. Hookwarms are known to adhere to the small intestine wall by interlocking with villi on the surface of the small intestine. The interlocking mechanism was considered as the main frictional mechanism for the design of the microrobot foot surface in this work. 2 mm and 6 mm diameter solid and hollow cylindrical shaped foot specimens were designed and tested to assess the frictional force between the specimens and the porcine small intestine specimen.

주조철제 유물 보존처리-경복궁 드므 보존처리를 중심으로 (The conservation for the cast iron of a storaged big vessel in Kyongpok Palace)

  • 문환석
    • 보존과학연구
    • /
    • 통권19호
    • /
    • pp.179-191
    • /
    • 1998
  • The Dumu of casted iron objects which is the big vessel for the prevention of fire to wood building is conserved in Kyongpok Palace(Dumu sizes:diameter 97cm, height 42cm, thickness 2cm, weight 250kg). The treated objects which some parts were lost, were not corroded, but cracted and broken by an external power, and strongly attached an cement layer on inside surface. First of all cement layer was mechanically removed by pneumatic needle scaler, welded to electric method for broken and cracked pieces, and then the lost sections were restored to use a epoxy resin and glass fiber. In order to prevent a damage during the handling, the restoration section of the inside surface was treated different colour in comparison with original part.

  • PDF

급 확대부를 갖는 실린더 챔버 내부의 둔각물체 주위 유동에 관한 대 와동 모사 (Large Eddy Simulation of turbulent flow around a bluff body inside a sudden expansion cylindrical chamber)

  • 최창용;고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.98-108
    • /
    • 2004
  • This study concerns a large eddy simulation (LES) of turbulent flow around a bluff body inside a sudden expansion cylindrical chamber, a configuration which resembles a premixed gas turbine combustor The simulation code is constructed by using the general coordinate system based on the physical contravariant velocity components. The Smagorinsky model is employed and the calculated Reynolds number is 5,000 based on the bulk velocity and the diameter of the inlet pipe. The combined grid technique and cylindrical grid are tested in the numerical simulation with complex geometry. The predicted turbulent statistics are evaluated by comparing with LDV measurement data. The numerical flow visualizations depict the behavior of turbulent mixing process behind the flame holder.

고온 가열 시멘트 페이스트의 3D 영상화 및 세공구조 변화 분석에 관한 연구 (A Study on the 3D Imaging of High Temperature Heating Cement Paste and the Analysis of Variation of the Pore Structure)

  • 김민혁;이건철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.147-148
    • /
    • 2020
  • In case of high temperature damage such as fire, the durability of concrete is reduced due to the collapse of internal pore tissue. Therefore, in this paper, we are going to analyze the pore structure of cement paste hardening agent using MIP analysis and build up 3D data produced using X-ray CT tomography. The test specimen is made of cement paste from W/C 0.4. As the temperature of heating increased, the amount of air gap and the diameter of air gap in cement paste increased. It is judged that the air gap structure inside cement collapsed due to the evaporation of the hydrate, gel count, capillary water, etc. inside the cement due to the high temperature.

  • PDF

U-자형 곡관내의 유동특성에 대한 수치해석적 연구 (NUMERICAL SIMULATION OF THE FLOW CHARACTERISTICS INSIDE A U-TYPE TUBE)

  • 고동훈;강동진;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.97-103
    • /
    • 2009
  • A numerical study of the flow characteristics inside a U-type circular tube is carried out in this paper. The numerical simulations carried out by using a Navier-Stokes code which is commercially available. Before detailed numerical simulations, validation of present numerical approach is made by comparing numerical solutions with experimental data. Numerical simulations are performed to study the effect of curvature on the flow characteristics inside a U-type tube. Numerical solutions show that a significant effect on the secondary flow structure in the cross section of the tube, especially in the curved section is shown when the curvature ratio, ratio of curvature to tube diameter, is smaller than about 3.5. As the curvature ratio decreases below 3.5, a counter rotating vortex is found below the primary vortex in the cross section of the tube. Another dramatic change of the flow structure is the formation of streamwise separation zone when the curvature ratio is decreased below 1.25.

  • PDF

강아지풀 형상을 닮은 관내 주행로봇 개발 (Development of a pipeline robot like foxtail)

  • 최용호;양현석;박노철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1167-1172
    • /
    • 2007
  • Generally inpipe robot needs force above standing for contacting robot to pipe. If the environment of the pipe-inside does not change, there is not a problem. But if the pipe radius change, or occur the obstacle which it does not intend, problem gets. So it uses a different system and must know an environment change, and changing the shape or a form of the robot. The research uses the flexible leg and is the robot which is adapted to the environment change of the pipe. The advantage of this robot is possible to move when it does not need to recognize a change of environment of pipe. Leg is bend with one direction. When it moves part that there are legs effect of leg direction the robot is moved with only one direction. If friction between legs and pipe is sufficient, not only verticality pipe moving, but also curved pipe moving. Also the obstacle of the pipe inside occurs and the diameter of the pipe inside changes, this robot can move if it does not use another system or device.

  • PDF

급 확대부를 갖는 실린더 챔버 내부 유동의 큰 척도 난류 보텍스 구조에 관한 연구 (Large-Scale Turbulent Vortical Structure Inside a Sudden Expansion Cylinder Chamber)

  • 성형진;고상철
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.905-914
    • /
    • 2001
  • A large eddy simulation(LES) is performed for turbulent flow around a bluff body inside a sudden expansion cylinder chamber, a configuration which resembles a premixed gas turbine combustor. To promote turbulent mixing and to accommodate flame stability, a flame holder is installed inside the combustion chamber. The Smagorinsky model is employed and the calculated Reynolds number is 5,000 based on the bulk velocity and the diameter of the inlet pipe. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The predicted turbulent statistics are evaluated by comparing them with the laser-doppler velocimetry (LDV) measurement data. The agreement of LES with the experimental data is shown to be satisfactory. Emphasis is placed on the time-dependent evolutions of turbulent vortical structure behind the flame holder. The numerical flow visualizations depict the behavior of large-scale vortices. The turbulent mixing process behind the flame holder is analyzed by visualizing the sectional views of vortical structure.

트러스 벽면과 미세격자 트러스로 구성된 정육면체 단위모델의 강성 및 강도 개발 (Development of Effective Stiffness and Effective Strength for a Truss-Wall Rectangular model combined with Micro-Lattice Truss)

  • 최정호
    • 한국산업융합학회 논문집
    • /
    • 제19권3호
    • /
    • pp.133-143
    • /
    • 2016
  • The objective in here is to find the density, stiffness, and strength of truss-wall rectangular (TWR) model which is combined with lattice truss (MLT) inside space. The TWR unit-cell model is defined as a unit cell originated from a solid-wall rectangular (SWR) model and it has an empty space inside. Thus, the empty space inside of the TWR is filled with lattice truss model defined as TWR-MLT. The ideal solutions derived of TWR-MLT are based on TWR with MLT model and it has developed by Gibson-Ashby's theory. To validate the ideal solutions of the TWR-MLT, ABAQUS software is applied to predict the density, strength, and stiffness, and then each of them are compared with the Gibson-Ashby's ideal solution as a log-log scale. Applied material property is stainless steel 304 because of cost effectiveness and easy to get around. For the analysis, SWR and TWR-MLT models are 1mm, 2mm, and 3mm truss diameter separately within a fixed 20mm opening width. In conclusion, the relative Young's modulus and relative yield strength of the TWR-MLT unit model is reasonably matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, TWR-MLT model can be verified by advanced technologies such as 3D printing skills.t.

Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe

  • Zahrai, Seyed Mehdi;Cheraghi, Abdullah
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.195-204
    • /
    • 2017
  • Analytical and experimental studies of the innovative pipe in pipe damper have been recently investigated by the authors. In this paper, by adding lead or zinc infill or slit diaphragm inside the inner pipe, it is tried to increase the equivalent viscous damping ratio improving the cyclic performance of the recently proposed multi-level control system. The damper consists of three main parts including the outer pipe, inner pipe and added complementary damping part. At first plastic deformations of the external pipe, then the internal pipe and particularly the added core and friction between them make the excellent multi-level damper act as an improved energy dissipation system. Several kinds of added lead or zinc infill and also different shapes of slit diaphragms are modeled inside the inner pipe and their effectiveness on hysteresis curves are investigated with nonlinear static analyses using finite element method by ABAQUS software. Results show that adding lead infill has no major effect on the damper stiffness while zinc infill and slit diaphragm increase damper stiffness sharply up to more than 10 times depending on the plate thickness and pipe diameter. Besides, metal infill increases the viscous damping ratio of dual damper ranging 6-9%. In addition, obtained hysteresis curves show that the multi-level control system as expected can reliably dissipate energy in different imposed energy levels.