• Title/Summary/Keyword: Insertion strain

Search Result 87, Processing Time 0.026 seconds

Preparation and Characterization of $Li_4Ti_5O_{12}$ using Sol-Gel Method for Lithium Secondary Battery (Sol-Gel 방법을 이용한 리튬이차전지용 $Li_4Ti_5O_{12}$의 제조 및 특성)

  • Oh, Mi-Hyun;Kim, Han-Joo;Kim, Gyu-Sik;Kim, Young-Jae;Son, Won-Keun;Lim, Kee-Joe;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1989-1991
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. $Li_4Ti_5O_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here $Li_4Ti_5O_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed $Li_4Ti_5O_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of $Li_4Ti_5O_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of $1.0{\sim}3.0V$. Furthermore, the crystalline structure of $Li_4Ti_5O_{12}$ didn't transfer during the lithium intercalation and deintercalation process.

  • PDF

A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant

  • Hyoung Ju Lee;Sang-Moo Lee;Minseo Choi;Joo Hwan Kwon;Seon-Woo Lee
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.417-429
    • /
    • 2023
  • Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogencontaining heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPSdefective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.

Disruption of the metC Gene Affects Methionine Biosynthesis in Pectobacterium carotovorum subsp. carotovorum Pcc21 and Reduces Soft-Rot Disease

  • Seonmi, Yu;Jihee, Kang;Eui-Hwan, Chung;Yunho, Lee
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.62-74
    • /
    • 2023
  • Plant pathogenic Pectobacterium species cause severe soft rot/blackleg diseases in many economically important crops worldwide. Pectobacterium utilizes plant cell wall degrading enzymes (PCWDEs) as the main virulence determinants for its pathogenicity. In this study, we screened a random mutant, M29 is a transposon insertion mutation in the metC gene encoding cystathionine β-lyase that catalyzes cystathionine to homocysteine at the penultimate step in methionine biosynthesis. M29 became a methionine auxotroph and resulted in growth defects in methionine-limited conditions. Impaired growth was restored with exogenous methionine or homocysteine rather than cystathionine. The mutant exhibited reduced soft rot symptoms in Chinese cabbages and potato tubers, maintaining activities of PCWDEs and swimming motility. The mutant was unable to proliferate in both Chinese cabbages and potato tubers. The reduced virulence was partially restored by a complemented strain or 100 µM of methionine, whereas it was fully restored by the extremely high concentration (1 mM). Our transcriptomic analysis showed that genes involved in methionine biosynthesis or transporter were downregulated in the mutant. Our results demonstrate that MetC is important for methionine biosynthesis and transporter and influences its virulence through Pcc21 multiplication in plant hosts.

Production of Chimeric Mice Following Transgenesis of Multipotent Spermatogonial Stem Cells (유전자변형 다분화능 정원줄기세포를 이용한 키메라 생쥐의 생산)

  • Lim, Jung-Eun;Eum, Jin-Hee;Kim, Hyung-Joon;Park, Jae-Kyun;Lee, Hyun-Jung;Lee, Dong-Ryul
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.305-312
    • /
    • 2009
  • Multipotent spermatogonial stem cells (mSSCs), derived from uni-potent SSC, are a type of reprogrammed cells with similar characteristics to embryonic stem cells (ESCs). The aim of this study was to evaluate the potential for transgenesis of mSSC derived from outbred mice and the production of transgenic animal by the mSSC-insertion into embryo. mSSCs, established from outbred mice (ICR strain) in the previous study, were maintained and then transfected with a lenti-viral vector expressing green fluorescent protein (GFP), CS-CDF-CG-PRE. Embryonic stem cells (ESCs) were derived from inbred transgenic mice (C57BL/6-Tg (CAG-EGFP)) and were used as an experimental control. Transfected mSSCs were well proliferated in vitro and maintained their characteristics and normal karyotype. Ten to twelve mSSCs and ESCs were collected and inserted into perivitelline space of 8-cell mouse embryos, and then transferred them into uteri of poster mothers after an additional 2-days of culture. Percentage of mSSC-derived offsprings was 4.8% (47/980) and which was lower than those (11.7% (67/572)) of ESC-derived ones (P<0.05). However, even though different genetic background of mSSC and ESC origin, the production efficiency of coat-colored chimeric offspring in mSSC group was not different when compared it with ESC (6.4% (3/47) vs. 7.5% (5/67)). From these results, we confirmed that mSSC derived from outbred mice has a pluripotency and a potential to produce chimeric embryos or mice when reaggregatation with mSSC is performed.

  • PDF

Suppression Effect on Soft-rot by Bacteriocin-producing Avirulent Pectobacterium carotovorum subsp. carotovorum Pcc21-M15 (박테리오신을 분비하는 비병원성 돌연변이주에 의한 무름병 방제 효과)

  • Roh, Eun-Jung;Lee, Seung-Don;Heu, Sung-Gi
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.136-140
    • /
    • 2010
  • Pectobacterium carotovorum subsp. carotovorum causes soft rot disease in diverse plants. Carocin D is bacteriocin that is produced by Pectobacterium carotovorum subsp. carotovorum Pcc21 strain. Nonpathogenic mutant P. carotovorum subsp. carotovorum Pcc21-M15 strain was obtained by mutagenesis with Tn5 insertion and screened pathogenesity. P. carotovorum subsp. carotovorum Pcc21-M15 and E. coli (pRG3431), carocin D gene-transformed E. coli, produce carocin D against P. carotovorum subsp. carotovorum Pcc3. Pathogenic P. carotovorum subsp. carotovorum Pcc3 and mixture with Pcc21-M15 or E. coli (pRG3431) were treated with lettuces. Pcc21-M15 and E. coli (pRG3431) effectively suppressed the development of soft-rot disease. While symptoms in 90% of Pcc3-treated lettuces were observed after 3 days, only 25% of Pcc3 and Pcc21-M15-treated lettuces were observed to be infected after 6 days. These results suggest that the nonpathogenic strain P. carotovorum subsp. carotovorum. Pcc21-M15 and E. coli (pRG3431) are effective to soft-rot disease suppression.

Measuring System of Visual Evoked Potential (VEP) in Mice using BioPAC Modules (BioPAC 모듈을 이용한 마우스 시각유발전위 측정 시스템 확립)

  • Lee, Wang Woo;Ahn, Jung Ryul;Goo, Yong Sook
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.16-24
    • /
    • 2017
  • For the development of feasible retinal prosthesis, one of the important elements is acquiring proper judging tool if electrical stimulus leads to patient's visual perception. If evoked potential to electrical stimulus is recorded in primary visual (V1) cortex, it means that the stimulus effectively evokes visual perception. Therefore, in this study, we established VEP recording system on V1 cortex using BioPAC modules as the judging tool. And the measuring system was evaluated by recording VEP of mice. After anesthesia, normal mice (C57BL/6J strain; n = 6) were secured to stereotaxic apparatus (Harvard Apparatus, USA). For the recording of VEP, the stainless steel needle electrode (impedance: $2-5k{\Omega}$) was positioned on the surface of the cortex through the burr hole at 2.5 mm lateral and 4.6 mm caudal to bregma. DA 100C and EEG 100C BioPAC modules were used for the trigger signal and VEP recording, respectively. When left eye was blocked by black cover and right eye was stimulated by flash light using HMsERG (RetVet Corp, USA), VEP response at left V1 cortex was detected, but there was no response at right V1 cortex. Amplitudes and latencies of P2, N3 peaks of VEP recording varied according to the depths of the electrodes on V1 cortex. From the surface upto $600{\mu}m$ depth, amplitudes of P2 and N3 increased, while deeper than $600{\mu}m$, those amplitudes decreased. The deeper the insertion depth of the electrode, the latency of N1 peaks tends to be delayed. However, there was no statistically significant difference among the latencies of P2 and N3 peaks (P > 0.05, ANOVA). Our VEP recording data such as the insertion depth and the latency and amplitudes of peaks might be used as guidelines for electrically-evoked potential (EEP) recording experiment in near future.

Risk Factors for the Treatment Failure of Antibiotic-Loaded Cement Spacer Insertion in Diabetic Foot Infection (당뇨병성 족부 감염에서 항생제 혼합 시멘트 충전물 사용의 치료 실패 위험 인자 분석)

  • Park, Se-Jin;Song, Seungcheol
    • Journal of Korean Foot and Ankle Society
    • /
    • v.23 no.2
    • /
    • pp.58-66
    • /
    • 2019
  • Purpose: To evaluate the efficacy of antibiotic-loaded cement spacers (ALCSs) for the treatment of diabetic foot infections with osteomyelitis as a salvage procedure and to analyze the risk factors of treatment failure. Materials and Methods: This study reviewed retrospectively 39 cases of diabetic foot infections with osteomyelitis who underwent surgical treatment from 2009 to 2017. The mean age and follow-up period were $62{\pm}13years$ and $19.2{\pm}23.3months$, respectively. Wounds were graded using the Wagner and Strauss classification. X-ray, magnetic resonance imaging (or bone scan) and deep tissue cultures were taken preoperatively to diagnose osteomyelitis. The ankle-brachial index, toe-brachial index (TBI), and current perception threshold were checked. Lower extremity angiography was performed and if necessary, percutaneous transluminal angioplasty was conducted preoperatively. As a surgical treatment, meticulous debridement, bone curettage, and ALCS placement were employed in all cases. Between six and eight weeks after surgery, ALCS removal and autogenous iliac bone graft were performed. The treatment was considered successful if the wounds had healed completely within three months without signs of infection and no additional amputation within six months. Results: The treatment success rate was 82.1% (n=32); 12.8% (n=5) required additional amputation and 5.1% (n=2) showed delayed wound healing. Bacterial growth was confirmed in 82.1% (n=32) with methicillin-resistant Staphylococcus aureus being the most commonly identified strain (23.1%, n=9). The lesions were divided anatomically into four groups; the largest number was the toes: (1) toes (41.0%, n=16), (2) metatarsals (35.9%, n=14), (3) midfoot (5.1%, n=2), and (4) hindfoot (17.9%, n=7). A significant difference in the Strauss wound score and TBI was observed between the treatment success group and failure group. Conclusion: The insertion of ALCSs can be a useful treatment option in diabetic foot infections with osteomyelitis. Low scores in the Strauss classification and low TBI are risk factors of treatment failure.

A Large Genomic Deletion in Gibberella zeae Causes a Defect in the Production of Two Polyketides but not in Sexual Development or Virulence

  • Lee Sun-Hee;Kim Hee-Kyoung;Hong Sae-Yeon;Lee Yin-Won;Yun Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.215-221
    • /
    • 2006
  • Gibberella zeae (anamorph: Fusarium graminearum) is an important pathogen of cereal crops. This fungus produces a broad range of secondary metabolites, including polyketides such as aurofusarin (a red pigment) and zearalenone (an estrogenic mycotoxin), which are important mycological characteristics of this species. A screen of G. zeae insertional mutants, generated using a restriction enzyme-mediated integration (REMI) procedure, led to the isolation of a mutant (Z43R606) that produced neither aurofusarin nor zearalenone yet showed normal female fertility and virulence on host plants. Outcrossing analysis confirmed that both the albino and zearalenone-deficient mutations are linked to the insertional vector in Z43R606. Molecular characterization of Z43R606 revealed a deletion of at least 220 kb of the genome at the vector insertion site, including the gene clusters required for the biosynthesis of aurofusarin and zearalenone, respectively. A re-creation of the insertional event of Z43R606 in the wild-type strain demonstrated that the 220-kb deletion is responsible for the phenotypic changes in Z43R606 and that a large region of genomic DNA can be efficiently deleted in G. zeae by double homologous recombination. The results showed that 52 putative genes located in the deleted genomic region are not essential for phenotypes other than the production of both aurofusarin and zearalenone. This is the first report of the molecular characterization of a large genomic deletion in G. zeae mediated by the REMI procedure.

Cloning of the Endoglucanase Gene from Actinomyces sp. 40 in Escherichia coli and Some Properties of the Gene Products

  • Min, Hae-Ki;Choi, Yun-Jaie;Cho, Kwang-Keun;Ha, Jong-Kyu;Woo, Jung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.102-107
    • /
    • 1994
  • The $\beta$-1,4-endoglucanase gene from Actinomyces sp. 40 was cloned into Escherichia coli DH5$\alpha$ with pUC19. Chromosomal DNA from Actinomyces sp. 40 was cleaved with the restriction enzyme Sau3AI and ligated into pUC19 for the transformation of Escherichia coli DH5$\alpha$. Positive clones of $\beta$-1,4-endoglucanase gene were detected as the clear zones on a medium supplemented with carboxymethylcellulose (CMC). This transformant possessed a single plasmid, designated pDS1, which contained the vector DNA and a 3.5 kilobase (kb) Sau3AI insertion fragment encoding endoglucanase. The size of the cloned fragment was reduced to 2.0 kb. The endoglucanase activity produced by the E. coli DH5$\alpha$ (pDS6) was higher than that of Actinomyces sp. 40 strain. The optimum pH and temperature of the cloned enzyme were pH 4.0$\sim$5.0 and 55$^{\circ}C$, respectively. The cloned enzyme was stable at 55$^{\circ}C$ or below and in buffer ranging from pH 4.0 to 7.0. The enzyme degraded CMC but did not degrade xylan, cellobiose, and methyl-umbelliferylcellobiopyranoside (MUC).

  • PDF

AN EXPERIMENTAL STUDY ON THE EFFECT OF PROSTAGLANDIN $E_2$ ON ALVEOLAR BONE RESORPTION INDUCED BY TOOTH MOVEMENT IN RATS (Prostaglandin $E_2$가 백서의 치아이동시 치조골 흡수에 미치는 영향에 관한 실험적 연구)

  • Kang, Bong Ki;Suhr, Cheong Hoon
    • The korean journal of orthodontics
    • /
    • v.13 no.2
    • /
    • pp.147-154
    • /
    • 1983
  • This experiment was performed to study the effect of $PGE_2$ on the bone resorption at the tooth movement by orthodontic force. The experimental animals were the Sprague-Dawley strain rats. The orthodontic force was applied by the insertion of separating clamp made of 0.014' (0.356mm) wire to the interproximal site between the 2nd and the 3rd upper right molars. In experiment I, $0.2{\mu}g,\;0.4{\mu}g,\;0.8{\mu}g,\;and\;1.0{\mu}g\;PGE_2$ were locally injected at the submucosa near the 2nd molar of the maxilla each. The effect was detected by the count of the number of osteoclasts appeared at the compressed surface of interradicular bone. In experiment II, 1.0 mg/kg indomethacin (a specificc inhibitor of prostaglandin synthetas.) was subcutaneously injected. The effect was examined by the count of the number of cateoclasts appeared at the compressed surface of interradicular bone. The obtained results were follows; 1. The number of osteoclasts on the compressed surface of the interradicular bone increased in proportion to the increased dosage of $PGE_2$ administered. The number of osteoclasts increased significantly at the administration of $0.8{\mu}g\;and\;1.0{\mu}g\;PGE_2$ in contrast to the control (P<0.05). 2. The administration of 1.0 mg/kg indomethacin decreased the number of osteoclasts at the compressed bony surface significantly (P<0.01).

  • PDF