• Title/Summary/Keyword: Insect resistance

Search Result 182, Processing Time 0.032 seconds

Rice Insects : The Role of Host Plant Resistance in Integrated Management Systems

  • Heinrichs, E.A.
    • Korean journal of applied entomology
    • /
    • v.31 no.3
    • /
    • pp.256-275
    • /
    • 1992
  • Insects are among the most important abiotic and biotic constraints to rice production. National rice research programs are in various stages in the development and implementation of integrated pest management (IPM) stratagies for rice insect control. Among the various control tactics, insect resistant cultivars are sought as the major tactic in rice IPM. Through the activities of interdisciplinary teams of scientists significant progress has been made in the development and release of insect resistant cultivars to farmers. Because of its compatibility with other control tactics insect resistance has proven to fit well into the IPM approach to rice insect control agents and minimize the need for insecticide applications. The development of biotypes which overcome the resistance in rice plants has been a significant constraint in the breeding of rice for resistance to insects. Most notable examples in Asia are the green leafhopper, Nephotettix virescens, brown planthopper, Nilaparvata lygens and the Asian rice gall midge, Orseolia oryzae. The current breeding stratege is to develop rice cultivars with durable resistance on which virulent biotypes cannot adapt. In spite of the significant progress made in the breeding of insect resistant cultivars there are still numerous important rice insect species for which host plant resistance as a control tactic has not been fully utilized. Advances in biotechnology provide promise of solving some of the problems that have limited the use of host plant resistance as a major tactic in the integrated management of rice insect pests.

  • PDF

Molecular Breeding for Plant Disease Resistance : Prospects and Problems

  • Park, Hyo-Guen
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The technique of plant transformation has started to show off its great power in the area of plant breeding by commercially successful introduction of transgenic varieties such as herbicide tolerant soybean and insect resistant corn in USA with an unimaginable speed. However, in contrast with the great success in the commercialization of herbicide tolerance and insect resistance, the transformation works on disease resistance has not yet reached the stage of full commercialization. This review surveys the current status of molecular breeding for plant disease resistance and their limits and problems. Some novel ideas and approaches in molecular breeding for disease resistance are introduced.

  • PDF

Breeding Hybrid Rice with Genes Resistant to Diseases and Insects Using Marker-Assisted Selection and Evaluation of Biological Assay

  • Kim, Me-Sun;Ouk, Sothea;Jung, Kuk-Hyun;Song, Yoohan;Le, Van Trang;Yang, Ju-Young;Cho, Yong-Gu
    • Plant Breeding and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.272-286
    • /
    • 2019
  • Developing elite hybrid rice varieties is one important objective of rice breeding programs. Several genes related to male sterilities, restores, and pollinators have been identified through map-based gene cloning within natural variations of rice. These identified genes are good targets for introducing genetic traits in molecular breeding. This study was conducted to breed elite hybrid lines with major genes related to hybrid traits and disease/insect resistance in 240 genetic resources and F1 hybrid combinations of rice. Molecular markers were reset for three major hybrid genes (S5, Rf3, Rf4) and thirteen disease/insect resistant genes (rice bacterial blight resistance genes Xa3, Xa4, xa5, Xa7, xa13, Xa21; blast resistance genes Pita, Pib, Pi5, Pii; brown planthopper resistant genes Bph18(t) and tungro virus resistance gene tsv1). Genotypes were then analyzed using molecular marker-assisted selection (MAS). Biological assay was then performed at the Red River Delta region in Vietnam using eleven F1 hybrid combinations and two control vatieties. Results showed that nine F1 hybrid combinations were highly resistant to rice bacterial blight and blast. Finally, eight F1 hybrid rice varieties with resistance to disease/insect were selected from eleven F1 hybrid combinations. Their characteristics such as agricultural traits and yields were then investigated. These F1 hybrid rice varieties developed with major genes related to hybrid traits and disease/insect resistant genes could be useful for hybrid breeding programs to achieve high yield with biotic and abiotic resistance.

Insect Pest Resistance to Insecticides and Future Researches (해충의 살충제저항성과 금후대책)

  • Choi Seung Yoon
    • Korean journal of applied entomology
    • /
    • v.22 no.2 s.55
    • /
    • pp.98-105
    • /
    • 1983
  • The rapid increase in cases of insect resistance to insecticides indicates that the contribution of present chemical control practices inevitably leads to exhaustion of available insecticide resources against key insect species. Now the problem of insecticide resistance exists worldwide among insects and mites affecting field crops and animals including human beings, ranging from minimal or absent in some developing countries, where use of insecticides has been low, to extremely severe in many developed countries. Since the occurrence of insect resistance to insecticides was firstly recognized in 1908, the increase in recent decades has been almost linear and now the number of species of insects and acarines in which resistant strains have evolved have been increased to a total of 432. Of these, $261(60\%)$ are agricultural importance and $171(40\%)$ of medical/veterinary importance. The phenomenon of insecticide resistance is asserting itself as the greatest challenge to effective chemical control of many important insect pests. Resistance of insects to insecticides has a history of nearly 80 years, but its greatest increase and its strongest impact have occurred during the last 40 years following the discovery and extensive use of synthetic organic insecticides and acaricides. The impact of resistance should be considered not only in terms of greater cost of pest control due to increased dosages and number of applications but also in terms of the ecological disruption of pest-beneficial species density relationships, the loss of investment in the development of the insecticides concerned, and socio-economic disruption in agricultural communities. Despite its grave economic consequences, the phenomenon of insecticide resistance has received surprisingly little attention in Korea. Since the study of insecticides started firstly in 1963, many entomologists have been concerned with this study. According to their results, some of the rice pests and some of the mites on orchard trees, for example, have developed worrisome level of resistance in several areas of this peninsula. With many arthropods, considerable advances in the developed countries have been made in the study of the biochemical and physiological mechanisms of resistance. Progress involves the biochemical characteristics of specific defense mechanisms, their genetics, interactions, and their quantitative and qualitative contribution to resistance. But their studies arc still inadequately known and relatively little have been contributed in terms of unique schemes of population management in achieving satisfactory pest control. It is apparent that there is no easy solution to resistance as a general phenomenon. For future challenging to effective control of insect pests which are resistant to the insecticides concerned, new insecticide groups with distinctly novel mode of action are urgently needed. It is clear, however, that a great understanding of the factors which govern the intensity of selection of field population for resistance could lead to far more permanently successive use of chemicals within the framework of integrated pest management than heretofore practiced.

  • PDF

Vacuum infiltration transformation of non-heading Chinese cabbage (Brassica rapa L. ssp. chinensis) with the pinII gene and bioassay for diamondback moth resistance

  • Zhang, Junjie;Liu, Fan;Yao, Lei;Luo, Chen;Zhao, Qing;Huang, Yubi
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.217-224
    • /
    • 2011
  • Non-heading Chinese cabbage (Brassica rapa L. ssp. chinensis) is a popular vegetable in Asian countries. The diamondback moth (DBM), Plutella xylostella (L.), an insect with worldwide distribution, is a main pest of Brassicaceae crops and causes enormous crop losses. Transfer of the anti-insect gene into the plant genome by transgenic technology and subsequent breeding of insect-resistant varieties will be an effective approach to reducing the damage caused by this pest. We have produced transgenic non-heading Chinese cabbage plants expressing the potato proteinase inhibitor II gene (pinII) and tested the pest resistance of these transgenic plants. Non-heading Chinese cabbages grown for 45 days on which buds had formed were used as experimental materials for Agrobacterium-mediated vacuum infiltration transformation. Forty-one resistant plants were selected from 1166 g of seed harvested from the infiltrated plants based on the resistance of the young seedlings to the herbicide Basta. The transgenic traits were further confirmed by the Chlorophenol red test, PCR, and genomic Southern blotting. The results showed that the bar and pinII genes were co-integrated into the resistant plant genome. A bioassay of insect resistance in the second generation of individual lines of the transgenic plants showed that DBM larvae fed on transgenic leaves were severely stunted and had a higher mortality than those fed on the wild-type leaves.

Insect Resistance and Horticultural Trait Genetic Values of Potato Families

  • Souza, Velci Queiroz de;Pereira, Arione da Silva;Silva, Giovani Olegario da;Carvalho, Fernando Iraja Felix de;Oliveira, Antonio Costa de
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.69-74
    • /
    • 2008
  • This work aimed to evaluate 11 potato families for insect resistance horticultural traits. The families were derived from crosses between introduced insect resistant and adapted genotypes. A randomized complete block design, with three replications was used. The plot consisted of 25 genotypes of a family, summing up to 75 genotypes tested per family. Two susceptible cultivars were included in the experiment as checks. The genotypes were evaluated for insect resistance, tuber yield traits, tuber appearance and tuber skin smoothness. The genetic value for the intensity of insect attack in the leaves and in the tubers was lower(higher resistance) in the 11 families than in the checks. For yield traits, there was no predominant effect among the families regarding the origin of the resistant donor species(Solanum berthaultii and/or S. chacoense). However, there was a large contribution of the C-1485-16-87 recurrent parent in crosses with resistant genotypes for tuber yield and tuber number. In relation to tuber appearance, only the family derived form the C-1485-16-87/ ND140(S. berthaultii) cross did not differ from the checks. had genetic value tuber skin smoothness, it was identified that families derived from S. berthaultii resistant parents showed higher genetic values than the check cultivars. For tuber skin smoothness, the genetic values of the families neither differed significantly from each other nor from the checks.

  • PDF

Rice Breeding for the Resistance to the Disease and Insect Pests (수도 병해충에 대한 저항성품종의 육종)

  • Heu M. H.
    • Korean journal of applied entomology
    • /
    • v.22 no.2 s.55
    • /
    • pp.74-83
    • /
    • 1983
  • Yield losses due to diseases and insect pests were mentioned and emphasized the efficiency of resistant cultivars in curving the yield losses and increasing chemical efficiency. Present status of resistance breeding for blast, bacterial leaf blight viruses, brown planthopper and white backed planthopper were introduced and the resistance sources for those are discussed. Breeding strategies for above items were presented. Specially for the blast resistance, discussions were made in some detail. With brief future prospects of resistance breeding in Korea, a suggestion was made for pathologists to make clear about whether the blast spores will be brought from mainland China as we see with Bph and Wbph or not.

  • PDF

Gene Manipulation of Pin 2(Proteinase Inhibitor II) to the Cottonwood Leaf Beetle(Coleoptera : Chrysomelidae) in Transgenic Poplar(Populus deltodies × P. nigra) (형질전환(形質轉換)된 포플러의 딱정벌레에 대한 저항성(抵抗性) 유전자(遺傳子)(Proteinase Inhibitor II) 발현(發現))

  • Kang, Hoduck
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.407-414
    • /
    • 1997
  • The resistance of a non-transgenic poplar clone, 'Ogy' and three transgenic poplar lines to the cottonwood leaf beetle, Chrysomela scripta F., was evaluated by in vitro feeding. The lines were transformed with neomycin phosphotransferase II(NPT II) as a selectable marker, proteinase inhibitor II(pin2) as a resistance gene, and CaMV 35S as a promoter. An efficient method of sterilizing the beetle eggs and introducing them into plant tissue cultures was developed. The resistance of the transgenic lines was investigated in terms of effects tin leaf area consumed, insect weight, insect developmental stages, and plantlet root dry weight after feeding. Also, leaf area consumed was examined by leaf age as measured through leaf plastochron index(LPI). The leaf area consumed and insect weight were highly significant between transformants and control, and insect development in vitro was significant among the transgenic lines. Larval infestation was the most severe around LPI 4 to 5 which were young leaves. The system provided a quick, highly controlled method to screen developing transgenic plantlets directly.

  • PDF

Monitoring on Insecticide resistance of major insect pests in paddy field (주요 벼 해충에 대한 약제저항성 모니터링)

  • Lee, Si-Woo;Choi, Byeong-Ryeol;Park, Hyung-Man;Yoo, Jai-Ki
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.365-373
    • /
    • 2005
  • This study was carried out for looking into the status of susceptibility of pest insects to insecticides. Each insect Brown planthopper(BPH), Green leaf hopper(GLH), Smaller brown plant hopper(SBPH), Rice water weevil(RWW), were captured at various areas where the host crops were being cultivated and the susceptibility level of each pest insect was investigated. The susceptibility of each pest insect varied by insect species and areas where they were caught. BPHs kept higher level of susceptibility comparing to susceptible reference strain except to most of tested insecticides except imidacloprid (Resistance ratio was 68). The susceptibilities of GLH and SBPH to most of insecticides for their control did not developed markedly since 1976 except fipronil and imidacloprid which is widely used for WRR control. The insecticides used for control of WRR were very effective even at the concentration of one fourth of recommending concentration, but in 2000 suwon strain of WRR showed markedly reduction of susceptibility to carbofuran.

Insecticide Resistance in Increasing Interest

  • Lee, Sung-Eun;Kim, Jang-Eok;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.105-112
    • /
    • 2001
  • Insect pests can be controlled through direct application of insecticides. Insect control by residual protectants is relatively inexpensive and has an advantage of destroying all stages of infestations. The efficacy of control is largely determined by the concentration of insecticides to which the pest species is exposed. A reduction in the period of control in the field afforded by a specific level of a protectant indicates that resistance has developed. An increase in the level of protectant is required to maintain control, and the efficacy of currently used insecticides has been severely reduced by insecticide resistance in pest species. Development of resistance to particular insecticide varies with species because insecticide resistance is often correlated with increased levels of certain enzymes, which are cytochrome P450-dependent monooxygenases, glutathione S-transferases and esterases. Some sections of insecticide molecules can be modified by one or more of these primary enzymes. A reduction in the sensitivity of the action site of a xenobiotic also constitutes a mechanism of resistance. Acetylcholinesterase is a major target site for insecticide action, as are axonal sodium ion channels and ${\gamma}$-aminobutyric acid receptors. Development of reduced sensitivity of these target sites to insecticides usually occurs. This review not only may contribute to a better understanding of insecticide resistance, but also illustrates the gaps still present for a full biochemical understanding of the resistance.

  • PDF