• Title/Summary/Keyword: Insect defence

Search Result 5, Processing Time 0.021 seconds

Induction of Bactericidal Substance from the Immunized Larval Haemolymph of L. illustris (면역유충 체액으로 부터 항균물질의 유도)

  • 육순학;장정순
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.309-317
    • /
    • 1987
  • It was known that normal-haemolymph from the 3rd instar larvae of Lucillia illustris contain a lysozyme (or lysozyme-like substance) with bactericidal activity to fram positive bacteria, and the bactericidal activity of injured-haemolymph was increased significantly after injuring the body wall. To elucidate the defence mechanism of insect against the nonpathogenic bacteria, the immune-haemolymph against Escherichia coli K-12 was prepared after immunization. The bactericidal activity between injured and immune-haemolymph was compared, and it was revealed that the immune-haemolymph showed higher titer of bactericidal activity to fram positive bacteria as well as to Escherichia coli. The bactericidal substance from the immune-haemolymph was purified through a successive chromatographies on Sephacryl S-300 and CM-Sepharose CL-6B, and it was characterized as a basic protein in nature with heat stable property at acidic conditions.

  • PDF

Enhanced Pathogenicity of Baculovirus Using Immunosuppressive Genes Derived From Cotesia plutellae Bracovirus (폴리드나바이러스(CpBV) 유래 면역억제 유전자를 이용한 베큘로바이러스 병원력 제고 기술)

  • Kim, Yong-Gyun;Kwon, Bo-Won;Bae, Sung-Woo;Choi, Jai-Young;Je, Yeon-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.3
    • /
    • pp.283-290
    • /
    • 2008
  • Baculoviruses have been used to control some serious lepidopteran pests. However, their narrow target insect spectrum and slow efficacy are main limitations to be used in various applications. This study introduces a technique to overcome these limitations by inhibiting insect immune defence to enhance the viral pathogenicity. Polydnaviruses are an insect DNA virus group and symbiotic to some ichneumonid and braconid endoparasitoids. Cotesia plutellae bracovirus (CpBV) is a braconid polydnavirus and encodes several immunosuppressive genes. We selected seven CpBV genes and recombined them to wild type Autographa California multiple nucleopolyhedrovirus (AcNPV). A bioassay of these seven recombinants indicated that most recombinants had similar or superior efficacy to wild type AcNPV against beet armyworm, Spodoptera exigua, and diamondback moth, Plutella xylostella. Recombinant AcNPV with CpBV-ELP was the most potent in terms of lethal time by shortening more than 2 days compared to wild type AcNPV. This recombinant was further proved in its dose-dependent pathogenicity and its efficacy by spray application on S. exigua infesting cabbage cultivated in pots. We discussed the efficacy of CpBV-ELP recombinant AcNPV in terms of suppressing antiviral activity of target insects.

Identification of Antiviral-related Genes Up-regulated in Response to Bombyx mori Nucleopolyhedrovirus (누에로부터 핵다각체병 바이러스 방어관련 유전자 정보 분석)

  • Goo, Tae-Won;Hong, Sun-Mee;Kim, Sung-Wan;Choi, Kwang-Ho;Kim, Seong-Ryul;Park, Seung-Won;Kang, Seok-Woo;Yun, Eun-Young
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.53-62
    • /
    • 2012
  • Silkworm larvae often suffer from viral infections causing heavy losses to the economy of silk industry. Insects exhibit both humoral and cellular immune responses that are effective against various pathohens like bacteria, fungi, protozoa, etc., but no insect immune responses is effective against viral infection. To obtain genes related to insect antiviral immunity from Bombyx mori, the cDNA library was constructed from B. mori nucleopolyhedrovirus (BmNPV)-infected B. mori. From the cDNA library, we selected 411 differentially expressed clones, and the 5' ends of the inserts were sequenced to generate ESTs. In this work, 135 unigenes were generated after the assembly of 411 differentially expressed clones ESTs. Of these 135 unigenes, we selected 109 antiviral response-related candidates except 26 clones that high similarity with genes derived from BmNPV. Among 109 unigenes, a total of 80% had significant matches to genes from other organisms in the database, wheres 20% of the unigenes had not matched in the database. Functional groups of these sequences with matches in database were constructed according to their putative biological function. Three largest categories were control of cellular oraganization (52%), metabolism (20%), and protein fate (10%). The genetic information reported in this study will provide more information about antiviral-related genes in silkworms.

Biological Damage and Risk Assessment of The Wood Cultural Properties in Fire Prevention Area (화재방제구역에 따른 목조문화재 생물손상 및 생물위험도 평가)

  • Kim, Dae Woon;Chung, Yong Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.104-111
    • /
    • 2015
  • The three-year inspection of 20 tree stumps in the fire prevention area around the wooden building confirmed that termite colonies had been rapidly spread. In particular, four buildings among thirty one wooden buildings of Songgwang-sa temple were infected by the termite, indicating that the habitate of termite has been spread across the fire prevention area over the temple area. However, a non-destructive microwave diagnosis showed that internal damages have been progressed until now, suggesting a high risk to the building. These results suggest that the fire prevention area should be properly maintained to have harmful element controlled. Therefore, effective methods are required to eliminate tree stumps or wood materials used to establish fire prevention area near wooden buildings.

Disease Resistance-Based Management of Alternaria Black Spot in Cruciferous Crops (병 저항성 기반 십자화과 작물의 검은무늬병 관리)

  • Young Hee Lee;Su Min Kim;Seoung Bin Lee;Sang Hee Kim;Byung-Wook Yun;Jeum Kyu Hong
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.363-376
    • /
    • 2023
  • Alternaria black spots or blights in cruciferous crops have been devastating diseases worldwide and led to economic losses in broccoli, Chinese cabbage, kale, radish, rapeseed, etc. These diseases are caused by different Alternaria spp., including A. brassicae, A. brassicicola and A. raphani transmitted from infected seeds or insect vectors. Efforts to excavate disease resistance traits of cruciferous crops against Alternaria black spots or blights have been demonstrated. Genetic resource of disease resistance was investigated in the wild relatives of cruciferous crops, and different cultivars were screened under different inoculation conditions. Development of the disease-resistant lines against Alternaria black spots or blights was also tried via genetic transformation of the cruciferous crops using diverse plant defence-associated genes. Plant immunity activated by pre-treatment with chemicals, i. e. β-amino-n-butyric acid and melatonin, was suggested for reducing Alternaria black spots or blights in cruciferous crops. The disease resistance traits have also been evaluated in model plant Arabidopsis originating from different habitats. Various plant immunity-related mutants showing different disease responses from wild-type Arabidopsis provided valuable information for managing Alternaria black spots or blights in cruciferous crops. In particular, redox regulation and antioxidant responses altered in the Alternaria-infected mutants were discussed in this review.