• Title/Summary/Keyword: Inquiry-Based Learning

Search Result 360, Processing Time 0.032 seconds

The Effects of Chemistry Class Using Computer-Based Science Inquiry Program on Positive Experiences about Science, Science Core Competency, and Academic Achievement (컴퓨터 기반 과학 탐구 프로그램을 활용한 화학 수업이 과학 긍정경험, 과학과 핵심역량 및 학업성취도에 미치는 영향)

  • Kim, Sungki;Kim, Hyunjung
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.107-123
    • /
    • 2022
  • The purpose of this study is to investigate the effects of learning using computer-based science inquiry program. To this end, the three lessons computer-based science inquiry were developed in domain of material's properties. The developed program was put into K middle school located in Seoul and the effects were verified. For the experimental group, the three lessons computer-based science inquiry related to the separation of mixture were introduced, and for the comparison group, the contents presented in the textbook were introduced as a teacher-centered teaching method. To verify the effects of the program, 2-way ANCOVA was performed on positive experiences about science and science core competency, and 2-way ANOVA was performed on academic achievement. As a result of the study, there were significant differences between the two groups in positive experiernces about science and scientific core competencies and academic achievement (p<.05), and group*gender interaction effect was only significant in academic achievement (p<.05). From the results of this study, we could see the possibility of using a computer-based science inquiry program as a chemistry teaching method that enables sustainable scientific inquiry.

A Study on the Change of the Beginning Science Teachers' Beliefs About a Lesson and Teaching Practice in Argument-Based Inquiry Using Science Writing (논의기반 탐구 과학 글쓰기 수업 적용에서 나타나는 초임 과학 교사들의 수업에 대한 인식 및 수업실행 변화)

  • Kwon, Jeongin;Nam, Jeonghee
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.7
    • /
    • pp.1329-1342
    • /
    • 2013
  • The purpose of this research was to investigate the relationship between the change of beginning teachers' beliefs about a lesson and that of teaching practice and argument-based inquiry using science writing. Participants were three science teachers (A, B, and C) from different middle schools. Classroom observation and interview data were collected and transcribed for analysis. A Summary Writing test was also administered to examine whether there was an improvement in students' learning. The results indicated that the interaction between the teachers and their students developed, which is concluded as an improvement in the teaching practice. Teacher A and B also reported that teacher-student interaction had improved. Teacher A and C came to understand that argument-based inquiry using science writing classes constituted learner-centered instruction. The result from the Summary Writing Test showed the impact of the changes in teaching practice and in teachers' awareness of students' learning as well as produced meaningfully higher scores than compared groups on the rhetorical structure of all the specific areas in teacher A's school and on the scientific concept at B and C's schools.

An Analysis of Inquiry Activities Performed by Pre-service Elementary Teachers to Learn Optical Phenomena Using Algodoo Simulations (Algodoo 시뮬레이션을 활용한 초등 예비교사의 광학 현상 탐구 활동 분석)

  • Park, Jeongwoo
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.3
    • /
    • pp.538-552
    • /
    • 2022
  • This study attempted to understand the characteristics of pedagogic activities performed by pre-service elementary school teachers. To this end, it applied Algodoo simulations to analyze the actions of students and obtain educational implications for optical learning. The study's participants comprised 79 first-year students enrolled in a teacher training college. Their activities could be classified as representation reproductions, verification experiments, and inquiry experiments. Students who performed representation reproduction exercises replicated renowned and authoritative exemplars, apprehending and demonstrating their principal features through simulations. Students performing verification experiments attempted to validate previously learned optical concepts by reviewing the relevant theoretical contexts. Such students primarily conducted simple experiments. Students accomplishing inquiry experiments used simulations to explore phenomena they did not know. Some of them even investigated optical phenomena beyond the domain of general physics. The above results confirmed that free optical experiments performed using Algodoo can effectively denote starting points for learners to engage in activities at varying levels. Additionally, students require assistance from instructors in addressing queries about the application of the principles and models related to optics. This study suggests ways in which instructors should help students at each level of activity. Additionally, the paper presents examples of varying levels of inquiry-related activities available on Algodoo. It also discusses the advantages and disadvantages of performing inquiry-based activities on Algodoo and suggests ways of enhancing the learning achieved through this platform.

Content Diversity Analysis of Elementary Science Authorized Textbooks according to the 2015 Revised Curriculum: Focusing on the "Weight of an Object" Unit (2015 개정 교육과정에 따른 초등 과학 검정 교과서 내용 다양성 분석 - '물체의 무게' 단원을 중심으로 -)

  • Shin, Jung-Yun;Park, Sang-Woo;Jeong, Hyeon-Ji;Hong, Mi-Na;Kim, Hyeon-Jae
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.307-324
    • /
    • 2022
  • This study examined the content diversity of seven authorized science textbooks by comparing the characteristics of the science concept description and the contents of inquiry activities in the "weight of objects" unit. For each textbook, the flow of concept description content and the uniqueness of the concept description process were analyzed, and the number of nodes and links and words with high connections were determined using language network analysis. In addition, for the inquiry activities described in each textbook, the inquiry subject, inquiry type, science process skill, and uniqueness were investigated. Results showed that the authorized textbooks displayed no more diversity than expected in their scientific concept description method or their inquiry activity composition. The learning elements, inclusion of subconcepts, and central words were similar for each textbook. The comparison of inquiry activities showed similarities in their contents, inquiry types, and scientific process skills. Specifically, these textbooks did not introduce any research topics or experimental methods that were absent in previous textbooks. However, despite the fact that the authorized textbook system was developed based on the same curriculum, some efforts were made to make use of its strengths. Since the sequence of subconcepts to explain the core contents differed across textbooks, this explanation process was divided into several types, and although the contents of inquiry activities were the same, the materials for inquiry activities were shown differently for each textbook to improve and overcome the difficulties in the existing experiments. These findings necessitate the continuation of efforts to utilize the strengths of certified textbooks.

A Study on the Development of Science Textbooks for the Implementation of Flipped Learning (거꾸로 수업을 지원할 수 있는 과학교과서 모형 개발 연구)

  • Shin, Young-Joon;Ha, Ji-Hoon;Hong, Jun-Euy;Jhun, Young-Seok;Lee, Soo-Young;Park, Ji-Sun;Ji, Jae-Hwa;Lee, Soo-Ah;Moon, Hye-Sook;Lee, Sung-Hee
    • Journal of Science Education
    • /
    • v.40 no.1
    • /
    • pp.90-102
    • /
    • 2016
  • Flipped learning is generally designed to allow students to learn on their own in advance with the help of scaffolding material such as videos and text, and in the classroom, it is operated with the help of a teacher while the class is being learner-centered. For flipped learning, each of the teachers has to design the class, collect information, and prepare for scaffolding material, so they get to face a lot of difficulties spending much time to reorganize the curriculum and produce a video and so on. Accordingly, this researcher has developed flipped learning textbook models applicable to science class by analyzing Korean and overseas textbooks, conducting an in-depth interview to six science teachers practicing flipped learning, and also developing and applying the science textbook sample model. The elementary, middle, and high school science textbook models developed include not only the textbook-based model with no videos presented in advance but also the lecture-type model, experiment-based model, and inquiry and research-based model to realize flipped learning. This study is expected to present crucial implications to develop textbooks and science class as a class to perform learner-centered inquiry activity.

  • PDF

Development of a Deep Learning Model for Detecting Fake Reviews Using Author Linguistic Features (작성자 언어적 특성 기반 가짜 리뷰 탐지 딥러닝 모델 개발)

  • Shin, Dong Hoon;Shin, Woo Sik;Kim, Hee Woong
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.01-23
    • /
    • 2022
  • Purpose This study aims to propose a deep learning-based fake review detection model by combining authors' linguistic features and semantic information of reviews. Design/methodology/approach This study used 358,071 review data of Yelp to develop fake review detection model. We employed linguistic inquiry and word count (LIWC) to extract 24 linguistic features of authors. Then we used deep learning architectures such as multilayer perceptron(MLP), long short-term memory(LSTM) and transformer to learn linguistic features and semantic features for fake review detection. Findings The results of our study show that detection models using both linguistic and semantic features outperformed other models using single type of features. In addition, this study confirmed that differences in linguistic features between fake reviewer and authentic reviewer are significant. That is, we found that linguistic features complement semantic information of reviews and further enhance predictive power of fake detection model.

Analysis of the Elementary School Students' Views about Lab-based Science Learning (과학 실험 수업에 대한 초등학생들의 인식 분석)

  • Cho, Hyun-Jun;Yang, Il-Ho;Jeong, Jae-Hoon;Shin, Ae-Kyung;Sohn, Jung-Joo
    • Journal of Korean Elementary Science Education
    • /
    • v.27 no.2
    • /
    • pp.117-133
    • /
    • 2008
  • The purpose of this study was to investigate the elementary students' views about lab-based science learning. For the purpose of this study, semi-structured interviews were conducted with thirty sixth grade students in 12 classes from two elementary schools located in Daegu City. The interview contents consisted of three major categories. The first category was related to attitude toward science lab, the second was related to lab-based science learning which had four sub-categories; recognizing lesson object, planning experiment, performing experiment, drawing conclusion in lab-based science learning in which the students had ordinary have views and expectations, and the last category was related to students' difficulties and something need to be improved in lab-based science learning. In-depth interviews were performed individually and the interviews were recorded. From the interviews, we found that students, in first category, do like lab-activities more than lectures or instruction-based activities in textbook. Students, in second category, wanted generally more discussion for their own activities rather than teacher's instruction and they wanted teacher' mediation conflicts within small groups and comments for students' experiment results. In the last, most of students had fears for some dangerous reagents and accidents. Based on the results, the study suggested that teacher need to give their students to autonomous discussion opportunities to design and interpret data through teacher' guided questions in inquiry steps, to produce some intimate atmosphere for active interaction in small groups, and to teach the safety education on some dangerous reagents.

  • PDF

Development of Water Environmental Education Program Using Streams - Focused on ENVISION - (소하천 물 환경교육 프로그램 개발 - ENVISION을 중심으로 -)

  • Kim, Jeong-Hwa;Lee, Du-Gon
    • Hwankyungkyoyuk
    • /
    • v.20 no.4
    • /
    • pp.12-26
    • /
    • 2007
  • The purpose of this research is to develop a water environmental education (EE) program using streams, based on the core ideas of ENVISION and materializing elements that were extracted in this research. This research realized the elements and presented a model of the water EE program using a local stream. First, this research developed a basic model of a water EE program using streams by extracting 10 materializing elements and realizing the elements in 4 stage-procedural model. The 10 materializing elements were 1. experiencing the process of inquiry, 2. inquiring local environments, 3. self-directing learning and mutual interaction with colleagues, 4. collecting real data and interpreting, 5. utilizing the ICT(information and communication technology), 6. inquiring with the view point of the 'Environmental Studies for EE', 7. inquiring with the watershed concept, 8. inquiring with the integrating and the holistic view point, 9. pursuing the macroscopic understanding about environment, and 10. connecting the real world phenomena with the environmental concepts and theories. This research materialized these 10 elements in 4 stage model, following the previous ENVISION research, which are 1. preparing stage and visual assessment, 2. writing the report of the inquiry plan, 3. collecting the real data in the environment and performing the investigation, and 4. presenting the inquiry results. Second, with using this basic model, this research developed and presented a model of the specific water EE program using a case stream called 'Baig Cheon' stream, which is a local stream. This research is considered to have a considerable meaning in developing a EE program with ENVISION ideas for the watershed concept and inquiry with environmental science using local streams. The developed model can help the professional development of teachers and teacher education of water EE.

  • PDF

Sixth Graders' Inquiry Understanding for Scientific Evidence and Explanation (과학적 증거와 설명에 대한 초등학교 6학년 학생의 이해)

  • Jeong, Hei-Sawn;Oh, Eun-A
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.6
    • /
    • pp.634-649
    • /
    • 2003
  • The aim of this paper was to diagnose Korean sixth graders' understanding for scientific evidence and explanation. The instrument constructed by Jeong, Songer, and Lee (2002) was used to assess students' understanding for priority of scientific evidence, objectivity of data, relevance of evidence, data interpretation, coordination of theory and evidence, and repeated observation. Results showed that although many students recognized certain features of scientific inquiry such as objectivity of data, few of them understood why such features are valued and how to collect and use such data. In particular, students experienced difficulty in formulating explanation from evidence, not knowing, for example, that repeated observations are needed before making a general statement. The results of this study suggest that efforts to foster students' inquiry abilities need to be based on careful analyses of students existing inquiry skills and understanding.

Analyzing the Performance Assessment of Science Inquiry Experiments in High School Based on the 2015 Revised Curriculum (2015개정 교육과정에 따른 고등학교 과학탐구실험 수행평가 분석)

  • Hyeongtak Yun;Jihun Park;Dojun Jung;Jeonghee Nam
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.5
    • /
    • pp.421-432
    • /
    • 2024
  • This study aimed to ascertain whether the assessment of scientific inquiry skill in high school curricula aligns with the achievement standards outlined in the science education curriculum. It analyzed the skill identified in the performance assessment standards and those manifested in the performance assessment tasks, focusing on 411 high school science investigation experiment tasks. The results showed that the skill in achievement standards of performance assessment and tasks were biased toward certain skill, and the content validity of the assessment of skill was found to be low. The performance assessment in science inquiry experiments is conducted without adequately considering science inquiry skill, and there is a lack of consistency in teachers' assessment planning and execution. The study found that the preference for specific assessment methods affected the bias in skill covered by performance assessment tasks. This study suggests the need for diversifying the skill in teaching, learning, and assessment to cultivate the core competencies proposed in the curriculum, and it explores ways to improve skill assessment.