• Title/Summary/Keyword: Input indicator

Search Result 135, Processing Time 0.021 seconds

Comparative Analysis of Subsurface Estimation Ability and Applicability Based on Various Geostatistical Model (다양한 지구통계기법의 지하매질 예측능 및 적용성 비교연구)

  • Ahn, Jeongwoo;Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.31-44
    • /
    • 2014
  • In the present study, a few of recently developed geostatistical models are comparatively studied. The models are two-point statistics based sequential indicator simulation (SISIM) and generalized coupled Markov chain (GCMC), multi-point statistics single normal equation simulation (SNESIM), and object based model of FLUVSIM (fluvial simulation) that predicts structures of target object from the provided geometric information. Out of the models, SNESIM and FLUVSIM require additional information other than conditioning data such as training map and geometry, respectively, which generally claim demanding additional resources. For the comparative studies, three-dimensional fluvial reservoir model is developed considering the genetic information and the samples, as input data for the models, are acquired by mimicking realistic sampling (i.e. random sampling). For SNESIM and FLUVSIM, additional training map and the geometry data are synthesized based on the same information used for the objective model. For the comparisons of the predictabilities of the models, two different measures are employed. In the first measure, the ensemble probability maps of the models are developed from multiple realizations, which are compared in depth to the objective model. In the second measure, the developed realizations are converted to hydrogeologic properties and the groundwater flow simulation results are compared to that of the objective model. From the comparisons, it is found that the predictability of GCMC outperforms the other models in terms of the first measure. On the other hand, in terms of the second measure, the both predictabilities of GCMC and SNESIM are outstanding out of the considered models. The excellences of GCMC model in the comparisons may attribute to the incorporations of directional non-stationarity and the non-linear prediction structure. From the results, it is concluded that the various geostatistical models need to be comprehensively considered and comparatively analyzed for appropriate characterizations.

Management Effectiveness Evaluation(MEE) in Protected Areas for Forest Genetic Resources (산림유전자원보호구역의 관리효과성 평가 적용)

  • Ryu, Kwang-Su;Choi, Jae-Yong;Shin, Hyun-Tak
    • Journal of Forest and Environmental Science
    • /
    • v.27 no.3
    • /
    • pp.205-210
    • /
    • 2011
  • This study aims to assess MEE(management effectiveness evaluations) on PAs(protected areas) for forest genetic resources which play an important role in biodiversity conservation, and then to suggest better ways to manage PAs for forest genetic resources. This study applies same indicators of the MEE on PAs as the ones described in the prior study(Ryu et al. 2011). The indicators applied are composed of five elements, thirty-two indicators which all would be grouped into one element by each traits. Overall indicators belonging to the element of output and outcome are comparatively low. Especially the ones related to the change of biodiversity, degree of ecosystem health, variation of civil complaint and visitor satisfaction are ranked mostly low. The element of input shows the low rank on the number of staff and budget. The score of indicators related to the identification of the threats of PAs and local communities' supports turn out to be low in the element of Context. The element of process, however, has scored low on Staff management, Education/Awareness programs and Governance, while the law enforcement, management regulation and capacity to prevent forest disasters have made relatively high score. Meanwhile, all indicators in the element of planning have scored relatively high as compared to the indicators belonged to other elements. This study suggests to strengthen a few constructive proposals, such as facilitating efficient management framework for PAs, developing local community cooperation program, establishing survey, research and monitoring system, and registering PAs to the WDPA(World Database on Protected Areas) according to the IUCN categories.

A study on the acoustic performance of a silencer according to the change of properties of absorbing material (흡음재 물성치 변화에 따른 소음기 음향성능 연구)

  • Lee, Yongbeom;Yang, Haesang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.278-289
    • /
    • 2021
  • In this study, the acoustic performance of a dissipative silencer used in the ship with excellent performance compared to its size was predicted and analyzed using a numerical analysis method to reduce the pipe noise. To this end, the performance of the single expansion chamber-shaped silencer was verified using experimental and numerical analysis methods. The acoustic performance of the silencer was expressed using the Transmission Loss (TL), an indicator of its own performance, and the result was derived using the two-load method, which measured by changing the impedance at the end of the pipe. For the numerical analysis method, a general-purpose finite element analysis program was used, and the Delany-Bazley-Miki model with the flow resistivity of the sound absorbing material as an input parameter was applied. Finally, we compared the experimental and simulated results for each of the acoustic performances of the single expansion type and the dissipative silencer to confirm the consistency of the results, and predicted and analyzed the simulation results for four cases according to the properties of the sound absorbing material.

Rational Building Energy Assessment using Global Sensitivity Analysis (전역 민감도 분석을 이용한 건물 에너지 성능평가의 합리적 개선)

  • Yoo, Young-Seo;Yi, Dong-Hyuk;Kim, Sun-Sook;Park, Cheol-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.5
    • /
    • pp.177-185
    • /
    • 2020
  • The building energy performance indicator, called Energy Performance Index (EPI), has been used for the past decades in South Korea. It has a list of design variables assigned with weighting factors (a, b). Unfortunately, the current EPI method is not performance-based but very close to a prescriptive rating. With this in mind, this study aims to propose a new performance-based EPI method. For this purpose, a global sensitivity analysis method, Sobol, is employed. The Sobol method is suitable for complex nonlinear models and can decompose all the output variance due to every input. The Sobol sensitivity index of each variable is defined as 0 to 1 (0 to 100%), and the sum of all sensitivity indices is equal to 1 (100%). In this study, an office building was modeled using EnergyPlus and then the Latin Hypercube Sampling (LHS) was conducted to generate a surrogate model to EnergyPlus. The sensitivity index was suggested to replace weight (a) in the existing EPI. In addition, the discrete weight (b) in the existing EPI was replaced by a set of continuous regression functions. Due to the introduction of the sensitivity index and the continuous regression functions, the new proposed approach can provide far more accurate outcome than the existing EPI (R2: 0.83 vs. R2: 0.01 for cooling, R2: 0.66 vs. R2: 0.01 for total energy). The new proposed approach proves to be more rational, objective and performance-based than the existing EPI method.

BLE-based Indoor Positioning System design using Neural Network (신경망을 이용한 BLE 기반 실내 측위 시스템 설계)

  • Shin, Kwang-Seong;Lee, Heekwon;Youm, Sungkwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.75-80
    • /
    • 2021
  • Positioning technology is performing important functions in augmented reality, smart factory, and autonomous driving. Among the positioning techniques, the positioning method using beacons has been considered a challenging task due to the deviation of the RSSI value. In this study, the position of a moving object is predicted by training a neural network that takes the RSSI value of the receiver as an input and the distance as the target value. To do this, the measured distance versus RSSI was collected. A neural network was introduced to create synthetic data from the collected actual data. Based on this neural network, the RSSI value versus distance was predicted. The real value of RSSI was obtained as a neural network for generating synthetic data, and based on this value, the coordinates of the object were estimated by learning a neural network that tracks the location of a terminal in a virtual environment.

Key Performance Indicators for Project Management Performance of Large Contractors in Developing Countries: A Case Study in Vietnam

  • Soo-Yong Kim;Troung-Van Luu
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1599-1607
    • /
    • 2009
  • In order to deal with severe competition in the construction market of developing countries, large contractors must continually improve their own performance and operation. Performance measurement is the heart of ceaseless improvement in organizations. Key performance indicators (KPIs) play a key role in measuring project management performance (PMP) of large contractors in developing countries. The main objective of this paper is to identify KPIs, which can be used to measure PMP of contractors, and then analyze the underlying relationships of these KPIs in order to gain insight into PMP of large construction firms in Vietnam construction industry (VCI). Literature reviews and the pilot survey provided 30 KPIs. Fourteen KPIs, which have the mean values higher than 3.0, were considered as important KPIs through a questionnaire survey of 32 professionals. Factor analysis of these KPIs was employed to categorize them. The results of the survey revealed that top six KPIs are construction time and cost, owner satisfaction on services and products, and quality management and project team performance. Factor analysis uncovered that 14 top-ranked KPIs can be grouped under six categories, namely: (1) construction input management, (2) owner satisfaction, (3) cost and quality, (4) manpower management, (5) subcontractor performance and (6) equipment management. The findings of this research can be used as a guideline to measure PMP of contractors in Vietnam as well as in other developing countries. Since contractors from a country to the other country may have the same manner to manage construction projects, the results of this study may be useful not only to practitioners and researchers in Vietnam but also to participants in other developing countries.

  • PDF

Does the Agricultural Ecosystem Cause Environmental Pollution in Azerbaijan?

  • Elcin Nesirov;Mehman Karimov;Elay Zeynalli
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.617-632
    • /
    • 2022
  • In recent years, environmental pollution and determining the main factors causing this pollution have become an important issue. This study investigates the relationship between the agricultural sector and environmental pollution in Azerbaijan for 1992-2018. The dependent variable in the study is the agricultural greenhouse gas emissions (CO2 equivalent). Eight variables were selected as explanatory variables: four agricultural inputs and four agricultural macro indicators. Unit root tests, ARDL boundary test, FMOLS, DOLS and CCR long-term estimators, Granger causality analysis, and variance decomposition analyses were used to investigate the effect of these variables on agricultural emissions. The results show that chemical fertilizer consumption, livestock number, and pesticide use positively and statistically significantly affect agricultural emissions from agricultural input variables. In contrast, agricultural energy consumption has a negative and significant effect. From agricultural macro indicator variables, it was found that the crop and animal production index had a positive and significant effect on agricultural emissions. According to the Granger causality test results, it was concluded that there are a causality relationship from chemical fertilizer consumption, livestock number, crop and livestock production index variables towards agricultural emissions. Considering all the results obtained, it is seen that the variables that have the most effect on the increase in agricultural emissions in Azerbaijan are the number of livestock, the consumption of chemical fertilizers, and the use of pesticides, respectively. The results from the research will contribute to the information on agricultural greenhouse gas emissions and will play an enlightening role for policymakers and the general public.

Comparison of nutrient balance and nutrient loading index for cultivated land nutrient management (농경지 양분관리를 위한 양분수지 지표와 양분부하 지표간의 비교)

  • Lee, Jun-Hyung;Yoon, Young-Man
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.554-567
    • /
    • 2019
  • Recently, concerns regarding the environmental impact due to nutrient input in croplands have increased. Therefore, the government is promoting the introduction of a nutrient management system in croplands to solve the problem of excessive nutrient input. This study was carried out to establish nutrient indicators in regional croplands to facilitate the introduction of the national nutrient management system in Korea. The nutrient load and balance indicators for nitrogen and phosphorus were analyzed for nine provinces (Gang-won, Gyeong-gi, Chung-buk, Chung-nam, Jeon-buk, Jeon-nam, Gyeong-buk, Gyeong-nam, and Jeju). In the correlation analysis between the nutrient load and nutrient balance, the correlation coefficient (r) for nitrogen was 0.2504, which was not statistically significant at the 5% significance level. However, the correlation coefficient for phosphorus was 0.7375, which was statistically significant at the 5% significance level. In the nutrient management index, phosphorus showed mutual compatibility between the nutrient load and the nutrient balance indicators, but nitrogen showed no mutual compatibility between the nutrient load and the nutrient balance indicators. Therefore, utilization of the nutrient balance indicator, reflecting the characteristics of the agricultural environment, was more reasonable as a nutrient management index for regional nutrient management.

Environmental Impact Assessment of Rapeseed Cultivation by Life Cycle Assessment (전과정평가를 이용한 유채재배의 환경영향 평가)

  • Hong, Seung-Gil;Nam, Jae-Jak;Shin, Joung-Du;Ok, Yong-Sik;Choi, Bong-Su;Yang, Jae-E.;Kim, Jeong-Gyu;Lee, Sung-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • BACKGROUND: High input to the arable land is contributed to increasing productivity with causing the global environmental problems at the same time. Rapeseed cultivation has been forced to reassess its positive point for utilization of winter fallow field. The Objective of this study was performed to assess the environmental impact of rapeseed cultivation with double-cropping system in paddy rice on Yeonggwang district using life cycle assessment technique. METHODS AND RESULTS: For assessing each stage of rapeseed cultivation, it was collected raw data for input materials as fertilizer and pesticide and energy consumption rate by analyzing the type of agricultural machinery and working hours by 1 ton rapeseed as functional unit. Environmental impacts were evaluated by using Eco-indicator 95 method for 8 impact categories. It was estimated that 216 kg $CO_2$-eq. for greenhouse gas, 3.98E-05 kg CFC-11-eq. for ozone lazer depletion, 1.78 kg SO2-eq. for acidification, 0.28 kg $PO_4$-eq. for eutrophication, 5.23E-03 kg Pb-eq. for heavy metals, 2.51E-05 kg B(a)p-eq. for carcinogens, 1.24 kg SPM-eq. for smog and 6,460 MJ LHV for energy resource are potentially emitted to produce 1 ton rapeseed during its whole cultivation period, respectively. It was considered that 90% of these potential came from chemical fertilizer. For the sensitivity analysis, by increasing the productivity of rapeseed by 1 ton per ha, potential environmental loading was reduced at 22%. CONCLUSION(s): Fertilization affected most dominantly to the environmental burden, originated from the preuse stage, i.e. fertilizer manufacturing and transporting. It should be included and assessed an indirect emission, which is not directly emitted from agricultural activities. Recycling resource in agriculture with reducing chemical fertilizer and breeding the high productive variety might be contribute to reduce the environmental loading for the rapeseed cultivation.

Comparative Evaluation for Environmental Impact of Rapeseed and Barley Cultivation in Paddy Field for Winter using Life Cycle Assessment (겨울논 유채와 보리 재배시 전과정평가 방법을 이용한 환경영향 비교 평가)

  • Hong, Seung-Gil;Shin, JoungDu;Park, Kwang-Lai;Ahn, Min-Sil;Ok, Yong-Sik;Kim, Jeong-Gyu;Kim, Seok-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.59-68
    • /
    • 2016
  • The application of the Life Cycle Assessment (LCA) methodology to assess the environmental impact of rapeseed cultivation in winter fallow after harvesting rice was investigated and compared with barley cultivation in crop rotation system. Data for input materials were collected and analyzed by 1 ton rapeseed and barley as functional unit. For the Life Cycle Impact Assessment (LCIA) the Eco-indicator 95 method has been chosen because this is well documented and regularly applied impact method. From the comparison of impact categories such as greenhouse effect, ozone depletion, acidification, heavy metals, carcinogens, summer smog, and energy resources for 1 ton of final product, emission potential from rapeseed was higher than that from barley. The range from 65 to 96% of these potential came from chemical fertilizer. On the other hand, eutrophication potential from barley was higher than that from rapeseed, mainly came from utilizing the chemical fertilizer. During the cultivation of barley and rape, environmental burden by heavy metals was evaluated by 0.5 Pt, larger than points from other impact categories. The sum of points from all impact categories in barley and rapeseed was calculated to be 0.78 Pt and 0.82 Pt, respectively. From the sensitivity analysis for barley and rapeseed, scenario 1 (crop responses to fertilization level) showed the environmental burden was continuously increased with the amount of fertilization in barley cultivation, while it was not increased only at the optimum crop responses to fertilization in rapeseed (R3). With these results, rapeseed cultivation in winter fallow paddy contributed to the amounts of environmental burden much more than barley cultivation. It is, however, highly determined that environmental weighted point resulted from evaluating both cultivation was not significantly different.