• Title/Summary/Keyword: Input gas ratio

Search Result 150, Processing Time 0.03 seconds

Surface Flame Patterns and Stability Characteristics of Premixed Burner System for Fuel Reformers (개질기용 예혼합 버너의 화염형태 및 안정성 특성)

  • Lee, Pil-Hyong;Park, Bong-Il;Jo, Soon-Hye;Hwang, Sang-Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.8-14
    • /
    • 2010
  • Fuel processing systems which convert fuel into rich gas (such as stream reforming, partial oxidation, autothermal reforming) need high temperature environment ($600{\sim}1,000^{\circ}$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1~5 kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas, mixture of natural gas & anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural gas & anode off gas as reformer fuel in the porous ceramic burner. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity. In particular, the blue surface flame is found to be very stable at a very lean equivalence ratio at heat capacity and different fuels. The exhausted NOx and CO measurement shows that the blue surface flame represents the lowest NOx and CO emissions since it remains very stable at a lean equivalence ratio.

Discharge and Luminous Characteristics of Coplanar Type Xe Plasma Flat Lamp (면방전형 Xe 플라즈마 평판 램프의 방전 및 발광 특성)

  • Kim, Hyuk-Hwan;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.532-541
    • /
    • 2011
  • The Xe plasma flat lamp, considered to be a new eco-friendly LCD backlight, requires a further improvement of its luminance and luminous efficiency. To improve the performance of this type of lamp, it is necessary to understand the effects of the discharge variables on the luminous characteristics of the lamp. In this study, the luminous characteristics of a coplanartype Xe plasma flat lamp with a teeth-type electrode pattern were analyzed while varying the gas composition, gas pressure and input voltage. The effects of the phosphor layer on the discharge and the luminous characteristics of the lamp were also studied. The luminous efficiency of the coplanar-type Xe plasma flat lamp improved as the Xe input ratio and gas pressure increased. Higher luminous efficiency was also obtained when helium (He) was used as a buffer gas and when a phosphor layer was fabricated on the electrode region. In contrast, the luminous efficiency was reduced with increasing the input voltage. It was found that the infrared emissions from the lamp were affected by the Xe excitation rate in the plasma, the Xe gas density, the collisional quenching of excited Xe species by gas molecules, and the recombination rate between the Xe ions and electrons.

Propane Reforming in Gliding Arc Plasma Reformer for SynGas Generation (합성가스 생성을 위한 글라이딩 아크 플라즈마 개질기에서 프로판 개질)

  • Yang, Yoon-Cheol;Chun, Young-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.869-875
    • /
    • 2009
  • The purpose of this paper is to investigate the optimal condition of the syngas production by reforming of propane using Gliding arc plasma reformer. The gliding arc plasma reformer in 3 phases has been newly designed and developed with a quick starting and fast response time. It can be applicable to the various types of fuels (Hydrocarbons $C_xH_y$), and it has a high conversion rate of fuels and high production of hydrogen. The parametric screening studies were carried out according to the changes of a steam feed amount i.e., steam/carbon ratio, total gas flow rate and input electric power. The optimum operating conditions were S/C ratio 2.8, total gas flow rate of 14 L/min and input electric power of 2.4 kW. The result of optimum operating conditions showed the 55 % $H_2$, 14 % CO, 15 % $CO_2$, 10 % $C_3H_8$ and 4 % $CH_4$. Also, $C_3H_8$ conversion, $H_2$ yield and $H_2$ selectivity were 90 %, 42 %, 15 %, respectively. The energy efficiency and specific energy requirements were 37 % and 334 kJ/mol respectively.

Preparation of ITO Thin Films for Display Application with $O_2$ Gas Flow Ratio and Input Current by FTS (Facing Targets Sputtering) System

  • Kim, H.W.;Keum, M.J.;Lee, K.S.;Kim, H.K.;Kim, K.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1477-1479
    • /
    • 2005
  • In this work, the ITO thin films were prepared by FTS (Facing Targets Sputtering) system under different sputtering conditions which were varying $O_2$ gas flow, input current at room temperature. As a function of sputtering conditions, electrical and optical properties of prepared ITO thin films were measured. The electrical, optical characteristics and surface roughness of prepared ITO thin films were measured. In the results, as increasing $O_2$ gas 0.1[sccm] to 0.7[sccm], resistivity of ITO thin film was increased with a decreasing carrier concentration, $O_2$ gas over 0.3[sccm] the carrier mobility have a similarly value. Transmittance of prepared ITO thin films were improved at increasing $O_2$ gas 0.1[sccm] to 0.7[sccm]. And transmittance of all of the prepared ITO thin films was over 80%. We could obtain resistivity $6.19{\times}10^{-4}[{\omega}{\cdot}cm]$, carrier mobility $22.9[cm^2/V{\cdot}sec]$, carrier concentration $4.41{\times}10^{20}[cm^{-3}]$ and transmittance over 80% of ITO thin film prepared at working pressure 1mTorr, input current 0.4A without any substrate heating.

  • PDF

The Study on Optical Properties of Xenon ICP Lamp Dependently on Gas Pressure and Input Power (ICP 제논 램프의 가스 압력과 공급 전력에 따른 광학적 특성연구)

  • Choi, Gi-Seung;Lee, Seong-Jin;Lee, Jung-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1659-1660
    • /
    • 2006
  • After end of the 20th environmental problem was became issue. So about mercury free lighting sources are being studied very much. In this paper, a mercury and electrode free bulb was designed. in this bulb was injected mixed of Xe, Ne and Kr Gases. and then the bulb was discharged by 13.56MHz RF Power after spectrum, color coordinates and brightness were measured by spectrum meter CS-1000. Measured results were compared and analyzed, also analysis was able to do a characteristic of a gas defensive fight in proportion to a mixing ratio. Therefore the most of high brightness which was 4500cd/m2 was gained in 1:1 ratio of Xe:Ne at 60W input power.

  • PDF

Hydrogen Gas Production from Biogas Reforming using Plasmatron (플라즈마트론을 이용한 바이오가스 개질로부터 수소생산)

  • Kim, Seong Cheon;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.528-534
    • /
    • 2006
  • The purpose of this paper is to investigate the optimal operating condition for the hydrogen production by biogas reforming using the plasmatron induced thermal plasma. The component ratio of biogas($CH_4/CO_2$) produced by anaerobic digestion reactor were 1.03, 1.28, 2.12, respectively. And the reforming experiment was performed. To improve hydrogen production and methane conversion rates, parametric screening studies were conducted, in which there are the variations of biogas flow ratio(biogas/TFR: total flow rate), vapor flow ratio($H_2O/TFR$: total flow rate) and input power. When the variations of biogas flow ratio, vapor flow ratio and input power were 0.32~0.37, 0.36~0.42, and 8 kW, respectively, the methance conversion reached its optimal operating condition, or 81.3~89.6%. Under the condition mentioned above, the wet basis concentrations of the synthetic gas were H2 27.11~40.23%, CO 14.31~18.61%. The hydrogen yield and the conversion rate of energy were 40.6~61%, 30.5~54.4%, respectively, the ratio of hydrogen to carbon monoxide($H_2/CO$) was 1.89~2.16.

The Waveform Control and Blowhole Generation in the Wave Pulse MIG Welding for Galvanized Steel Sheets (아연도금강판에 대한 중첩펄스 MIG 용접에서의 파형제어와 기공 발생 특성)

  • Cho Sang-Myung;Kim Ki-Jung;Lee Byung-Woo
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.69-76
    • /
    • 2005
  • Recently, application of arc welding to galvanized carbon steel sheet is on the increasing Ould in the fields of automobile and construction industries. In arc welding process, zinc is evaporated in weld pool, even under the appropriate welding condition and produce blowhole and/or pit. Zinc gas cause instability of arc and increase spatter and fume. This research is purposed to minimize the heat-input and the formation of porosities in the welded joint of the galvanized carbon steel sheet using variable polarity AC wave pulse MIG welding system. An appropriate welding condition which showed low spatter and good bead appearance was acquired by applying the AC pulse MIG welding machine to DC duplicated MIG welding with the solid wire. When oxygen gas was added to shield gas of MIG welding for galvanized steel sheet, arc length was increased and arc stability was improved. In the AC duplicated welding, the loss of galvanized layer was decreased as the amount of heat-input was decreased when the EN ratio was increased under the condition that average welding current was evenly set.

Effects of Input Gases on the Growth Characteristics of Vertically Aligned Carbon Nanotubes in Plasma Enhanced Hot Filament Chemical Vapor Deposition

  • Han, Jae-Hee;Yang, Ji-Hun;Yang, Won-Suk;Yang, Cheol-Woong;Yoo, Ji-Beom;Park, Chong-Yun
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.2
    • /
    • pp.55-60
    • /
    • 2000
  • Vertically aligned carbon nanotubes on nickel coated glass substrates were obtained at low temperatures below 600$\^{C}$ by plasma enhanced hot filament chemical vapor deposition where acetylene gas was used as the carbon source and ammonia gas was used as the dilution gas and catalyst. The diameters of the nanotubes decreased from 96 m to 41 m as NH$_3$/C$_2$H$_2$ ratio increased from 2:1 to 5:1. Total flow rate of input gases with constant NH$_3$/C$_2$H$_2$ ratio did not change the diameter of carbon nanotubes. No growth of the carbon nanotubes was observed with only C$_2$H$_2$ nor N$_2$ instead of NH$_2$. G line and D line in Raman spectra were observed, which implies that there were many structural defects in carbon nanotubes.

  • PDF

Effect of Deposition Parameters on MgO Thin Films on Si(100) Substrates by Reactive RF Magnetron Sputtering (Reactive RF 마그네트론 스퍼터링법으로 Si(100) 기판에 MgO박막 제조시 증착변수의 영향)

  • 이영준;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.6
    • /
    • pp.643-650
    • /
    • 1994
  • Highly [100]-oriented MgO thin films were deposited on Si(100) single crystal substrates by reactive RF magnetron sputtering. The effects of substrate temperature, gas pressure, RF input powder, and gas composition on the characteristics of MgO thin films were studied. The higher substrate temperature and the lower operating pressure were, the better crystallinity of the deposited MgO thin films were. The influences of the RF input power and oxygen to argon ratio were very complex. The physical characteristics of the films changed dramatically with deposition conditions. Highly smooth and epitaxial MgO films were obtained at the deposition conditions as follows; subatrate temperature, $600^{\circ}C$; operating pressure, 10 mtorr; RF input power density, 2 W/$\textrm{cm}^2$; the percentage of oxygen, 10%.

  • PDF

Preparation of ITO Transparent Conductive thin film for Display at Room Temperature (디스플레이용 ITO 투명전도막의 저온 제작)

  • Kim Kyung-Hwan;Kim Hyun-Woong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.4 s.13
    • /
    • pp.5-8
    • /
    • 2005
  • In this study, we prepared the ITO thin film for TOLED(Top-emitting OLED) or flexible display at room temperature using the FTS(Facing Targets Sputtering Apparatus). We observed characteristics of deposited thin films as a function of sputtering conditions. XRD patterns were independence trom oxygen gas flow and input current. But electrical and optical properties were strongly dependence. In the results, we could prepare good properties of ITO thin films resistivity of $4.27X10^{-4}[\Omega-cm]$, transmittance of over 80% at working gas pressure 1[mTorr], input current 0.6[A], oxygen gas ratio 0.3[sccm], at room temperature.

  • PDF