• Title/Summary/Keyword: Input framework

Search Result 483, Processing Time 0.032 seconds

Ontology-based Course Mentoring System (온톨로지 기반의 수강지도 시스템)

  • Oh, Kyeong-Jin;Yoon, Ui-Nyoung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.149-162
    • /
    • 2014
  • Course guidance is a mentoring process which is performed before students register for coming classes. The course guidance plays a very important role to students in checking degree audits of students and mentoring classes which will be taken in coming semester. Also, it is intimately involved with a graduation assessment or a completion of ABEEK certification. Currently, course guidance is manually performed by some advisers at most of universities in Korea because they have no electronic systems for the course guidance. By the lack of the systems, the advisers should analyze each degree audit of students and curriculum information of their own departments. This process often causes the human error during the course guidance process due to the complexity of the process. The electronic system thus is essential to avoid the human error for the course guidance. If the relation data model-based system is applied to the mentoring process, then the problems in manual way can be solved. However, the relational data model-based systems have some limitations. Curriculums of a department and certification systems can be changed depending on a new policy of a university or surrounding environments. If the curriculums and the systems are changed, a scheme of the existing system should be changed in accordance with the variations. It is also not sufficient to provide semantic search due to the difficulty of extracting semantic relationships between subjects. In this paper, we model a course mentoring ontology based on the analysis of a curriculum of computer science department, a structure of degree audit, and ABEEK certification. Ontology-based course guidance system is also proposed to overcome the limitation of the existing methods and to provide the effectiveness of course mentoring process for both of advisors and students. In the proposed system, all data of the system consists of ontology instances. To create ontology instances, ontology population module is developed by using JENA framework which is for building semantic web and linked data applications. In the ontology population module, the mapping rules to connect parts of degree audit to certain parts of course mentoring ontology are designed. All ontology instances are generated based on degree audits of students who participate in course mentoring test. The generated instances are saved to JENA TDB as a triple repository after an inference process using JENA inference engine. A user interface for course guidance is implemented by using Java and JENA framework. Once a advisor or a student input student's information such as student name and student number at an information request form in user interface, the proposed system provides mentoring results based on a degree audit of current student and rules to check scores for each part of a curriculum such as special cultural subject, major subject, and MSC subject containing math and basic science. Recall and precision are used to evaluate the performance of the proposed system. The recall is used to check that the proposed system retrieves all relevant subjects. The precision is used to check whether the retrieved subjects are relevant to the mentoring results. An officer of computer science department attends the verification on the results derived from the proposed system. Experimental results using real data of the participating students show that the proposed course guidance system based on course mentoring ontology provides correct course mentoring results to students at all times. Advisors can also reduce their time cost to analyze a degree audit of corresponding student and to calculate each score for the each part. As a result, the proposed system based on ontology techniques solves the difficulty of mentoring methods in manual way and the proposed system derive correct mentoring results as human conduct.

Evaluation of Setup Uncertainty on the CTV Dose and Setup Margin Using Monte Carlo Simulation (몬테칼로 전산모사를 이용한 셋업오차가 임상표적체적에 전달되는 선량과 셋업마진에 대하여 미치는 영향 평가)

  • Cho, Il-Sung;Kwark, Jung-Won;Cho, Byung-Chul;Kim, Jong-Hoon;Ahn, Seung-Do;Park, Sung-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.81-90
    • /
    • 2012
  • The effect of setup uncertainties on CTV dose and the correlation between setup uncertainties and setup margin were evaluated by Monte Carlo based numerical simulation. Patient specific information of IMRT treatment plan for rectal cancer designed on the VARIAN Eclipse planning system was utilized for the Monte Carlo simulation program including the planned dose distribution and tumor volume information of a rectal cancer patient. The simulation program was developed for the purpose of the study on Linux environment using open source packages, GNU C++ and ROOT data analysis framework. All misalignments of patient setup were assumed to follow the central limit theorem. Thus systematic and random errors were generated according to the gaussian statistics with a given standard deviation as simulation input parameter. After the setup error simulations, the change of dose in CTV volume was analyzed with the simulation result. In order to verify the conventional margin recipe, the correlation between setup error and setup margin was compared with the margin formula developed on three dimensional conformal radiation therapy. The simulation was performed total 2,000 times for each simulation input of systematic and random errors independently. The size of standard deviation for generating patient setup errors was changed from 1 mm to 10 mm with 1 mm step. In case for the systematic error the minimum dose on CTV $D_{min}^{stat{\cdot}}$ was decreased from 100.4 to 72.50% and the mean dose $\bar{D}_{syst{\cdot}}$ was decreased from 100.45% to 97.88%. However the standard deviation of dose distribution in CTV volume was increased from 0.02% to 3.33%. The effect of random error gave the same result of a reduction of mean and minimum dose to CTV volume. It was found that the minimum dose on CTV volume $D_{min}^{rand{\cdot}}$ was reduced from 100.45% to 94.80% and the mean dose to CTV $\bar{D}_{rand{\cdot}}$ was decreased from 100.46% to 97.87%. Like systematic error, the standard deviation of CTV dose ${\Delta}D_{rand}$ was increased from 0.01% to 0.63%. After calculating a size of margin for each systematic and random error the "population ratio" was introduced and applied to verify margin recipe. It was found that the conventional margin formula satisfy margin object on IMRT treatment for rectal cancer. It is considered that the developed Monte-carlo based simulation program might be useful to study for patient setup error and dose coverage in CTV volume due to variations of margin size and setup error.

A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data (스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식)

  • Kim, Kilho;Choi, Sangwoo;Chae, Moon-jung;Park, Heewoong;Lee, Jaehong;Park, Jonghun
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.163-177
    • /
    • 2019
  • As smartphones are getting widely used, human activity recognition (HAR) tasks for recognizing personal activities of smartphone users with multimodal data have been actively studied recently. The research area is expanding from the recognition of the simple body movement of an individual user to the recognition of low-level behavior and high-level behavior. However, HAR tasks for recognizing interaction behavior with other people, such as whether the user is accompanying or communicating with someone else, have gotten less attention so far. And previous research for recognizing interaction behavior has usually depended on audio, Bluetooth, and Wi-Fi sensors, which are vulnerable to privacy issues and require much time to collect enough data. Whereas physical sensors including accelerometer, magnetic field and gyroscope sensors are less vulnerable to privacy issues and can collect a large amount of data within a short time. In this paper, a method for detecting accompanying status based on deep learning model by only using multimodal physical sensor data, such as an accelerometer, magnetic field and gyroscope, was proposed. The accompanying status was defined as a redefinition of a part of the user interaction behavior, including whether the user is accompanying with an acquaintance at a close distance and the user is actively communicating with the acquaintance. A framework based on convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent networks for classifying accompanying and conversation was proposed. First, a data preprocessing method which consists of time synchronization of multimodal data from different physical sensors, data normalization and sequence data generation was introduced. We applied the nearest interpolation to synchronize the time of collected data from different sensors. Normalization was performed for each x, y, z axis value of the sensor data, and the sequence data was generated according to the sliding window method. Then, the sequence data became the input for CNN, where feature maps representing local dependencies of the original sequence are extracted. The CNN consisted of 3 convolutional layers and did not have a pooling layer to maintain the temporal information of the sequence data. Next, LSTM recurrent networks received the feature maps, learned long-term dependencies from them and extracted features. The LSTM recurrent networks consisted of two layers, each with 128 cells. Finally, the extracted features were used for classification by softmax classifier. The loss function of the model was cross entropy function and the weights of the model were randomly initialized on a normal distribution with an average of 0 and a standard deviation of 0.1. The model was trained using adaptive moment estimation (ADAM) optimization algorithm and the mini batch size was set to 128. We applied dropout to input values of the LSTM recurrent networks to prevent overfitting. The initial learning rate was set to 0.001, and it decreased exponentially by 0.99 at the end of each epoch training. An Android smartphone application was developed and released to collect data. We collected smartphone data for a total of 18 subjects. Using the data, the model classified accompanying and conversation by 98.74% and 98.83% accuracy each. Both the F1 score and accuracy of the model were higher than the F1 score and accuracy of the majority vote classifier, support vector machine, and deep recurrent neural network. In the future research, we will focus on more rigorous multimodal sensor data synchronization methods that minimize the time stamp differences. In addition, we will further study transfer learning method that enables transfer of trained models tailored to the training data to the evaluation data that follows a different distribution. It is expected that a model capable of exhibiting robust recognition performance against changes in data that is not considered in the model learning stage will be obtained.

백악기 미국 걸프만 퇴적층의 지구조적, 퇴적학적, 석유지질학적 고찰 (A Review of Tectonic, Sedinlentologic Framework and Petroleum Geology of the Cretaceous U. S. enlf Coast Sedimentary Sequence)

  • Cheong Dae-Kyo
    • The Korean Journal of Petroleum Geology
    • /
    • v.4 no.1_2 s.5
    • /
    • pp.27-39
    • /
    • 1996
  • In the Cretaceous, the Gulf Coast Basin evolved as a marginal sag basin. Thick clastic and carbonate sequences cover the disturbed and diapirically deformed salt layer. In the Cretaceous the salinities of the Gulf Coast Basin probably matched the Holocene Persian Gulf, as is evidenced by the widespread development of supratidal anhydrite. The major Lower Cretaceous reservoir formations are the Cotton Valley, Hosston, Travis Peak siliciclastics, and Sligo, Trinity (Pine Island, Pearsall, Glen Rose), Edwards, Georgetown/Buda carbonates. Source rocks are down-dip offshore marine shales and marls, and seals are either up-dip shales, dense limestones, or evaporites. During this period, the entire Gulf Basin was a shallow sea which to the end of Cretaceous had been rimmed to the southwest by shallow marine carbonates while fine-grained terrigengus clastics were deposited on the northern and western margins of the basin. The main Upper Cretaceous reservoir groups of the Gulf Coast, which were deposited in the period of a major sea level .rise with the resulting deep water conditions, are Woodbinefruscaloosa sands, Austin chalk and carbonates, Taylor and Navarro sandstones. Source rocks are down-dip offshore shales and seals are up-dip shales. Major trap types of the Lower and Upper Cretaceous include salt-related anticlines from low relief pillows to complex salt diapirs. Growth fault structures with rollover anticlines on downthrown fault blocks are significant Gulf Coast traps. Permeability barriers, up-dip pinch-out sand bodies, and unconformity truncations also play a key role in oil exploration from the Cretaceous Gulf Coast reservoirs. The sedimentary sequences of the major Cretaceous reseuoir rocks are a good match to the regressional phases on the global sea level cuwe, suggesting that the Cretaceous Gulf Coast sedimentary stratigraphy relatively well reflects a response to eustatic sea level change throughout its history. Thus, of the three main factors controlling sedimentation (tectonic subsidence, sediment input, and eustatic sea level change) in the Gulf Coast Basin, sea-level ranks first in the period.

  • PDF

A Control Method for designing Object Interactions in 3D Game (3차원 게임에서 객체들의 상호 작용을 디자인하기 위한 제어 기법)

  • 김기현;김상욱
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.3
    • /
    • pp.322-331
    • /
    • 2003
  • As the complexity of a 3D game is increased by various factors of the game scenario, it has a problem for controlling the interrelation of the game objects. Therefore, a game system has a necessity of the coordination of the responses of the game objects. Also, it is necessary to control the behaviors of animations of the game objects in terms of the game scenario. To produce realistic game simulations, a system has to include a structure for designing the interactions among the game objects. This paper presents a method that designs the dynamic control mechanism for the interaction of the game objects in the game scenario. For the method, we suggest a game agent system as a framework that is based on intelligent agents who can make decisions using specific rules. Game agent systems are used in order to manage environment data, to simulate the game objects, to control interactions among game objects, and to support visual authoring interface that ran define a various interrelations of the game objects. These techniques can process the autonomy level of the game objects and the associated collision avoidance method, etc. Also, it is possible to make the coherent decision-making ability of the game objects about a change of the scene. In this paper, the rule-based behavior control was designed to guide the simulation of the game objects. The rules are pre-defined by the user using visual interface for designing their interaction. The Agent State Decision Network, which is composed of the visual elements, is able to pass the information and infers the current state of the game objects. All of such methods can monitor and check a variation of motion state between game objects in real time. Finally, we present a validation of the control method together with a simple case-study example. In this paper, we design and implement the supervised classification systems for high resolution satellite images. The systems support various interfaces and statistical data of training samples so that we can select the most effective training data. In addition, the efficient extension of new classification algorithms and satellite image formats are applied easily through the modularized systems. The classifiers are considered the characteristics of spectral bands from the selected training data. They provide various supervised classification algorithms which include Parallelepiped, Minimum distance, Mahalanobis distance, Maximum likelihood and Fuzzy theory. We used IKONOS images for the input and verified the systems for the classification of high resolution satellite images.

Measuring the Economic Impact of Item Descriptions on Sales Performance (온라인 상품 판매 성과에 영향을 미치는 상품 소개글 효과 측정 기법)

  • Lee, Dongwon;Park, Sung-Hyuk;Moon, Songchun
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.1-17
    • /
    • 2012
  • Personalized smart devices such as smartphones and smart pads are widely used. Unlike traditional feature phones, theses smart devices allow users to choose a variety of functions, which support not only daily experiences but also business operations. Actually, there exist a huge number of applications accessible by smart device users in online and mobile application markets. Users can choose apps that fit their own tastes and needs, which is impossible for conventional phone users. With the increase in app demand, the tastes and needs of app users are becoming more diverse. To meet these requirements, numerous apps with diverse functions are being released on the market, which leads to fierce competition. Unlike offline markets, online markets have a limitation in that purchasing decisions should be made without experiencing the items. Therefore, online customers rely more on item-related information that can be seen on the item page in which online markets commonly provide details about each item. Customers can feel confident about the quality of an item through the online information and decide whether to purchase it. The same is true of online app markets. To win the sales competition against other apps that perform similar functions, app developers need to focus on writing app descriptions to attract the attention of customers. If we can measure the effect of app descriptions on sales without regard to the app's price and quality, app descriptions that facilitate the sale of apps can be identified. This study intends to provide such a quantitative result for app developers who want to promote the sales of their apps. For this purpose, we collected app details including the descriptions written in Korean from one of the largest app markets in Korea, and then extracted keywords from the descriptions. Next, the impact of the keywords on sales performance was measured through our econometric model. Through this analysis, we were able to analyze the impact of each keyword itself, apart from that of the design or quality. The keywords, comprised of the attribute and evaluation of each app, are extracted by a morpheme analyzer. Our model with the keywords as its input variables was established to analyze their impact on sales performance. A regression analysis was conducted for each category in which apps are included. This analysis was required because we found the keywords, which are emphasized in app descriptions, different category-by-category. The analysis conducted not only for free apps but also for paid apps showed which keywords have more impact on sales performance for each type of app. In the analysis of paid apps in the education category, keywords such as 'search+easy' and 'words+abundant' showed higher effectiveness. In the same category, free apps whose keywords emphasize the quality of apps showed higher sales performance. One interesting fact is that keywords describing not only the app but also the need for the app have asignificant impact. Language learning apps, regardless of whether they are sold free or paid, showed higher sales performance by including the keywords 'foreign language study+important'. This result shows that motivation for the purchase affected sales. While item reviews are widely researched in online markets, item descriptions are not very actively studied. In the case of the mobile app markets, newly introduced apps may not have many item reviews because of the low quantity sold. In such cases, item descriptions can be regarded more important when customers make a decision about purchasing items. This study is the first trial to quantitatively analyze the relationship between an item description and its impact on sales performance. The results show that our research framework successfully provides a list of the most effective sales key terms with the estimates of their effectiveness. Although this study is performed for a specified type of item (i.e., mobile apps), our model can be applied to almost all of the items traded in online markets.

Opportunity Tree Framework Design For Optimization of Software Development Project Performance (소프트웨어 개발 프로젝트 성능의 최적화를 위한 Opportunity Tree 모델 설계)

  • Song Ki-Won;Lee Kyung-Whan
    • The KIPS Transactions:PartD
    • /
    • v.12D no.3 s.99
    • /
    • pp.417-428
    • /
    • 2005
  • Today, IT organizations perform projects with vision related to marketing and financial profit. The objective of realizing the vision is to improve the project performing ability in terms of QCD. Organizations have made a lot of efforts to achieve this objective through process improvement. Large companies such as IBM, Ford, and GE have made over $80\%$ of success through business process re-engineering using information technology instead of business improvement effect by computers. It is important to collect, analyze and manage the data on performed projects to achieve the objective, but quantitative measurement is difficult as software is invisible and the effect and efficiency caused by process change are not visibly identified. Therefore, it is not easy to extract the strategy of improvement. This paper measures and analyzes the project performance, focusing on organizations' external effectiveness and internal efficiency (Qualify, Delivery, Cycle time, and Waste). Based on the measured project performance scores, an OT (Opportunity Tree) model was designed for optimizing the project performance. The process of design is as follows. First, meta data are derived from projects and analyzed by quantitative GQM(Goal-Question-Metric) questionnaire. Then, the project performance model is designed with the data obtained from the quantitative GQM questionnaire and organization's performance score for each area is calculated. The value is revised by integrating the measured scores by area vision weights from all stakeholders (CEO, middle-class managers, developer, investor, and custom). Through this, routes for improvement are presented and an optimized improvement method is suggested. Existing methods to improve software process have been highly effective in division of processes' but somewhat unsatisfactory in structural function to develop and systemically manage strategies by applying the processes to Projects. The proposed OT model provides a solution to this problem. The OT model is useful to provide an optimal improvement method in line with organization's goals and can reduce risks which may occur in the course of improving process if it is applied with proposed methods. In addition, satisfaction about the improvement strategy can be improved by obtaining input about vision weight from all stakeholders through the qualitative questionnaire and by reflecting it to the calculation. The OT is also useful to optimize the expansion of market and financial performance by controlling the ability of Quality, Delivery, Cycle time, and Waste.

The Simulation of Pore Size Distribution from Unsaturated Hydraulic Conductivity Data Using the Hydraulic Functions (토양 수리학적 함수를 이용한 불포화 수리전도도로부터 공극크기분포의 모사)

  • Yoon, Young-Man;Kim, Jeong-Gyu;Shin, Kook-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.407-414
    • /
    • 2010
  • Until now, the pore size distribution, PSD, of soil profile has been calculated from soil moisture characteristic data by water release method or mercury porosimetry using the capillary rise equation. But the current methods are often difficult to use and time consuming. Thus, in this work, theoretical framework for an easy and fast technique was suggested to estimate the PSD from unsaturated hydraulic conductivity data in an undisturbed field soil profile. In this study, unsaturated hydraulic conductivity data were collected and simulated by the variation of soil parameters in the given boundary conditions (Brooks and Corey soil parameters, ${\alpha}_{BC}=1-5L^{-1}$, b = 1 - 10; van Genuchten soil parameters, ${\alpha}_{VG}=0.001-1.0L^{-1}$, m = 0.1 - 0.9). Then, $K_s$ (1.0 cm $h^{-1})$ was used as the fixed input parameter for the simulation of each models. The PSDs were estimated from the collected K(h) data by model simulation. In the simulation of Brooks-Corey parameter, the saturated hydraulic conductivity, $K_s$, played a role of scaling factor for unsaturated hydraulic conductivity, K(h) Changes of parameter b explained the shape of PSD curve of soil intimately, and a ${\alpha}_{BC}$ affected on the sensitivity of PSD curve. In the case of van Genuchten model, $K_s$ and ${\alpha}_{VG}$ played the role of scaling factor for a vertical axis and a horizontal axis, respectively. Parameter m described the shape of PSD curve and K(h) systematically. This study suggests that the new theoretical technique can be applied to the in situ prediction of PSD in undisturbed field soil.

Water Balance Projection Using Climate Change Scenarios in the Korean Peninsula (기후변화 시나리오를 활용한 미래 한반도 물수급 전망)

  • Kim, Cho-Rong;Kim, Young-Oh;Seo, Seung Beom;Choi, Su-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.807-819
    • /
    • 2013
  • This study proposes a new methodology for future water balance projection considering climate change by assigning a weight to each scenario instead of inputting future streamflows based on GCMs into a water balance model directly. K-nearest neighbor algorithm was employed to assign weights and streamflows in non-flood period (October to the following June) was selected as the criterion for assigning weights. GCM-driven precipitation was input to TANK model to simulate future streamflow scenarios and Quantile Mapping was applied to correct bias between GCM hindcast and historical data. Based on these bias-corrected streamflows, different weights were assigned to each streamflow scenarios to calculate water shortage for the projection periods; 2020s (2010~2039), 2050s (2040~2069), and 2080s (2070~2099). As a result by applying the proposed methodology to project water shortage over the Korean Peninsula, average water shortage for 2020s is projected to increase to 10~32% comparing to the basis (1967~2003). In addition, according to getting decreased in streamflows in non-flood period gradually by 2080s, average water shortage for 2080s is projected to increase up to 97% (516.5 million $m^3/yr$) as maximum comparing to the basis. While the existing research on climate change gives radical increase in future water shortage, the results projected by the weighting method shows conservative change. This study has significance in the applicability of water balance projection regarding climate change, keeping the existing framework of national water resources planning and this lessens the confusion for decision-makers in water sectors.

Ecoclimatic Map over North-East Asia Using SPOT/VEGETATION 10-day Synthesis Data (SPOT/VEGETATION NDVI 자료를 이용한 동북아시아의 생태기후지도)

  • Park Youn-Young;Han Kyung-Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.86-96
    • /
    • 2006
  • Ecoclimap-1, a new complete surface parameter global database at a 1-km resolution, was previously presented. It is intended to be used to initialize the soil-vegetation- atmosphere transfer schemes in meteorological and climate models. Surface parameters in the Ecoclimap-1 database are provided in the form of a per-class value by an ecoclimatic base map from a simple merging of land cover and climate maps. The principal objective of this ecoclimatic map is to consider intra-class variability of life cycle that the usual land cover map cannot describe. Although the ecoclimatic map considering land cover and climate is used, the intra-class variability was still too high inside some classes. In this study, a new strategy is defined; the idea is to use the information contained in S10 NDVI SPOT/VEGETATION profiles to split a land cover into more homogeneous sub-classes. This utilizes an intra-class unsupervised sub-clustering methodology instead of simple merging. This study was performed to provide a new ecolimatic map over Northeast Asia in the framework of Ecoclimap-2 global database construction for surface parameters. We used the University of Maryland's 1km Global Land Cover Database (UMD) and a climate map to determine the initial number of clusters for intra-class sub-clustering. An unsupervised classification process using six years of NDVI profiles allows the discrimination of different behavior for each land cover class. We checked the spatial coherence of the classes and, if necessary, carried out an aggregation step of the clusters having a similar NDVI time series profile. From the mapping system, 29 ecosystems resulted for the study area. In terms of climate-related studies, this new ecosystem map may be useful as a base map to construct an Ecoclimap-2 database and to improve the surface climatology quality in the climate model.