• Title/Summary/Keyword: Input energy

Search Result 2,484, Processing Time 0.035 seconds

Energy Balance in Various Management of Paddy Ecosystem (논 생태계 관리방법에 따른 에너지 수지)

  • Lim, Kyoung-Soo;An, Sun-Hee;Kim, Jung-Wk
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.299-303
    • /
    • 1999
  • A set of surveys was performed at Chungchongbuk-Do in 1997 in order to analyze energy related in rice production. Four cases in rice farming were surveyed : traditional farming, no chemical farming, duck farming, mud snail farming. The farmer in traditional fanning has used chemical fertilizers and chemicals such as general farmers. The farmer in no chemical farming has used chemical fertilizers and manure but has not use chemicals. The farmer in duck farming has not used chemical fertilizers and chemicals but brought up duck in paddy. The farmer in mud snail has not used chemical fertilizers and chemicals but brought up mud snail in paddy. The animals n paddy as like duck and mud snail not only eat weeds and insect but also input fertile material by excretion. The results of energy analysis are as follows 1. In view of energy, the duck farming was the most efficient of four cases. The mud snail farming was less efficient than the duck farming, the traditional farming was less efficient than the mud snail farming, the na chemical farming was less efiicierrt than the traditional farming. 2. Relatively to amount of product, non renewable energy was used more in traditional farming than other cases and renewable energy was used more in no chemical farming than other cases. 3. The reason of low energy efficiency in the no chemical farming was to input fertilizers and manure so much. So to input nutrients excessively in order not to use chemicals can make rice farming to be inefficient in a view of energy. 4. The farming to bring up animals in paddy was more sustainable than other cases because input of non renewable energy could be decreased. But in order to make it to be more sustainable, should be developed cultivation method to decrease input of non renewable direct energy such as fossil fuel and electricity .

  • PDF

An Immune Algorithm based Multiple Energy Carriers System (면역알고리즘 기반의 MECs (에너지 허브) 시스템)

  • Son, Byungrak;Kang, Yu-Kyung;Lee, Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.23-29
    • /
    • 2014
  • Recently, in power system studies, Multiple Energy Carriers (MECs) such as Energy Hub has been broadly utilized in power system planners and operators. Particularly, Energy Hub performs one of the most important role as the intermediate in implementing the MECs. However, it still needs to be put under examination in both modeling and operating concerns. For instance, a probabilistic optimization model is treated by a robust global optimization technique such as multi-agent genetic algorithm (MAGA) which can support the online economic dispatch of MECs. MAGA also reduces the inevitable uncertainty caused by the integration of selected input energy carriers. However, MAGA only considers current state of the integration of selected input energy carriers in conjunctive with the condition of smart grid environments for decision making in Energy Hub. Thus, in this paper, we propose an immune algorithm based Multiple Energy Carriers System which can adopt the learning process in order to make a self decision making in Energy Hub. In particular, the proposed immune algorithm considers the previous state, the current state, and the future state of the selected input energy carriers in order to predict the next decision making of Energy Hub based on the probabilistic optimization model. The below figure shows the proposed immune algorithm based Multiple Energy Carriers System. Finally, we will compare the online economic dispatch of MECs of two algorithms such as MAGA and immune algorithm based MECs by using Real Time Digital Simulator (RTDS).

An experimental study on cooling characteristic of a thermoelectric module (열전모듈의 냉각특성에 관한 실험적 연구)

  • Hwang, Jun;Kang, Byung Ha
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.341-347
    • /
    • 2004
  • An experimental study has been carried out on cooling perfonnance of a thennoelectric module. This problem is of particular interest in the design of the refrigeration systems using thermoelectric module, such as cosmetic refrigerator, wine cellar and air cooler. The effect of the input voltage and the hot side temperature on the cooling performance is studied in detail. The $\Delta$T, temperature difference between cold side and hot side surface of thermoelectric module, is described in terms of the input voltage and the hot side temperature. It is found that the cooling capacity can be improved by increasing the input voltage and by reducing the heat from the hot side of the thermoelectric module. However, COP is decreased with an increase in the input voltage, since power consumption is also increased. Thus, optimum input voltage can be selected based on cooling capacity and COP.

Methods to Predict Demand for Workforce in New & Renewable Energy Industry (신.재생에너지 인력수요전망 방법론 및 사례 연구)

  • Lee, You-Ah;Heo, Eunn-Yeong
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.36-45
    • /
    • 2011
  • Prediction of demand for workforce in new and renewable energy is precondition for sustainable growth of an industry. The purpose of this research is to review prediction methods and case studies of workforce in new and renewable energy industry. This research compares the three methods in the focused on possibility of applying in renewable energy industry; survey, input-output and labor function estimation methods. Also, three cases are reviewed in the focused on applied method; Korea, America and Australia. As a result, the survey method was wildly used in the new and renewable industry. Also the improvement rates of work force are difference depending on the methodology. This result can be applied to set up the policy of human resource development of renewable energy.

A Study the Behavior of Plastic Deformation in Weld HAZ of Mild Steel (軟鋼 熔接熱影響部의 塑性變形擧動에 關한 硏究 II)

  • 박창언;정세희
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.43-51
    • /
    • 1992
  • The plastic zone formed around a notch tip is important in analyzing the fracture toughness of structures and particularly weld cracks existed in the weld HAZ (heat affected zone) which produces local plastic deformation at the crack tip. Therefore, in order to analyze the fracture toughness in weld HAZ, it is necessary to investigate the new fracture toughness parameter $K_{c}$ $^{*}$ and critical plastic strain energy $W_{p}$ $^{c}$ according to the shape and size of the plastic zone. 1) If the temperature corresponding to $K_{c}$ $^{*}$=130kg-m $m^{-3}$ 2/ is determined, transition temperature $T_{tr}$ the magnitude of plastic zone size, and heat input change depending on the fracture toughness. The blunted amounts of the parent and weld HAZ show mild linear variation until .delta.=0.4mm and then increase very steeply there after. 2) The relation between the plastic strain energy( $W^{p}$ ) and transition temperature( $T_{*}$tr) in parent metal is more sensitive than that of weld HAZ. However, the plastic strain energy depends on the transition temperature, and thus the yield stress, .sigma.$_{ys}$ becomes an important parameter for plastic strain energy. 3) The critical plastic strain energy( $W_{p}$ $^{c}$ ) absorbed by the plastic zone at the notch tip indicated in case of parent metal: 60J/mm, in case of heat input(20KJ/cm): 75J/mm, in case of heat input(30KJ/cm); 50J/mmJ/mm.

  • PDF

An Economic Evaluation about Research and Development for Renewable energy in Korea (대체에러지 기술개발에 대한 수익성 평가분석)

  • 전영서;김진오
    • Journal of Korea Technology Innovation Society
    • /
    • v.7 no.2
    • /
    • pp.325-349
    • /
    • 2004
  • This paper tried to evaluate an economic analysis about research and development far areas of renewable resource in Korea. To evaluate this validity, we tried to calculate the spillover effect of R&D investment through input-output table. In the first stage of spillover effect, we simply calculate the rate of return on R&D investment for renewable energy resources in Korea through the input-output model, which can calculate the value added as well as output based upon the price of 2000 year. According to the first stage calculation, the rate of return on R&B investment in solar heat is higher than any other renewable energy. In the second stage we tried to calculate the second round of spill over effect, which derives from the additional amount of supply of renewable resources due to the R&D investment. The overall evaluation of R&D invesment including the first stage as well as second stage spillover effect shows that bio-energy and waste energy generate 14 times as well as 2.5 times in the rate of return respectively.

  • PDF

An Active Voltage Doubling Rectifier with Unbalanced-Biased Comparators for Piezoelectric Energy Harvesters

  • Liu, Lianxi;Mu, Junchao;Yuan, Wenzhi;Tu, Wei;Zhu, Zhangming;Yang, Yintang
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1226-1235
    • /
    • 2016
  • For wearable health monitoring systems, a fundamental problem is the limited space for storing energy, which can be translated into a short operational life. In this paper, a highly efficient active voltage doubling rectifier with a wide input range for micro-piezoelectric energy harvesting systems is proposed. To obtain a higher output voltage, the Dickson charge pump topology is chosen in this design. By replacing the passive diodes with unbalanced-biased comparator-controlled active counterparts, the proposed rectifier minimizes the voltage losses along the conduction path and solves the reverse leakage problem caused by conventional comparator-controlled active diodes. To improve the rectifier input voltage sensitivity and decrease the minimum operational input voltage, two low power common-gate comparators are introduced in the proposed design. To keep the comparator from oscillating, a positive feedback loop formed by the capacitor C is added to it. Based on the SMIC 0.18-μm standard CMOS process, the proposed rectifier is simulated and implemented. The area of the whole chip is 0.91×0.97 mm2, while the rectifier core occupies only 13% of this area. The measured results show that the proposed rectifier can operate properly with input amplitudes ranging from 0.2 to 1.0V and with frequencies ranging from 20 to 3000 Hz. The proposed rectifier can achieve a 92.5% power conversion efficiency (PCE) with input amplitudes equal to 0.6 V at 200 Hz. The voltage conversion efficiency (VCE) is around 93% for input amplitudes greater than 0.3 V and load resistances larger than 20kΩ.

Development of Adsorption Desalination System Utilizing Silica-gel (실리카겔을 이용한 흡착식 담수화 시스템 개발)

  • Hyun, Jun-Ho;Israr, Farrukh;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.364-369
    • /
    • 2012
  • The development of solar thermal energy used adsorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar thermal energy used and adsorption desalination system was introduced. Silica gel type adsorption desalination system is considered to be a promising low-temperature heat utilization system. The design is divided into three parts. First, the evaporator for the vaporization of the tap water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basic research, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar thermal energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. Desalination is processes that permeate our daily lives, but It requires substantial energy input, powered either from electricity or from thermal input. From the environmental and sustainability perspecives, innovative thermodynamic cycles are needed to produce the above-mentioned useful effects at a lower specific energy input. This article describes the development of adsorption cycles for the production of desalting effects. We want that this adsorption system can be driven by low temperature heat sources at 60 to $80^{\circ}C$, such as renewable, solar thermal energy.

  • PDF

Evaluation of input-output energy use in strawberry production in single-span double-layered greenhouses with different thermal-curtain positions

  • Timothy Denen Akpenpuun;Wook-Ho Na;Qazeem Opeyemi Ogunlowo;Anis Rabiu;Misbaudeen Aderemi Adesanya;Prabhat Dutta;Ezatullah Zakir;Hyeon-Tae Kim;Hyun-Woo Lee
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.395-406
    • /
    • 2023
  • The large amount of energy required for successful crop production is the main challenge in greenhouse cropping systems. As a response to this challenge a comprehensive evaluation of greenhouse energy consumption was carried out in two structurally similar single-span greenhouses with different thermal curtain positions, with particular attention to energy productivity, specific energy, net energy, and energy ratio. The greenhouses are used for strawberry production. In the R-greenhouse (RGH), the thermal curtain hanged directly at the roof ridge, whereas in the Q-greenhouse (QGH), the thermal curtain was placed 5° from an imaginary vertical axis, from the middle of the roof ridge downwards to the north side of the greenhouse roof. The relevant data were recorded using standard methods. The results indicated that the energy expended in the RGH and QGH systems was 2,186.48 and 2,189.26 MJ/m2, respectively. Electricity and nitrogen fertilizer contributed the highest energy input in both greenhouses and in all seasons. The output energy was 3.12 and 3.82 MJ/m2, respectively, in RGH and QGH in season I and 4.40 and 4.87 MJ/m2 in season II. In terms of energy expended, there was no significant difference between the two greenhouses, nor between the two seasons. These results indicate that greenhouses of the size used in this investigation are not viable in terms of energy productivity, energy-use efficiency, and subsequent economic performance. However, further studies should be conducted to scale-up the information obtained from this investigation.

Decision on Blurring for Business Card Images Using Block Classification (블록 분류를 이용한 명함 영상에서의 블러링 판단)

  • 김종흔;장익훈;김남철
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1707-1710
    • /
    • 2003
  • In this paper, we propose a method of decision on blurring for business card images using block classification. In the proposed method, an input image is partitioned into 8${\times}$8 blocks and each block is classified into character block or background block using a block energy calculated in DCT domain. Whether the input image is blurring or non-blurring is determined using a ratio of low frequency energy and high frequency energy in DCT domain. Experimental results show that the proposed block classification classifies block well and the proposed decision on blurring decides well for various business card images.

  • PDF