• Title/Summary/Keyword: Input and Output Parameters

Search Result 889, Processing Time 0.03 seconds

The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM (다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형)

  • Park, Ji-Young;Hong, Tae-Ho
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.

Design and Implementation of an Execution-Provenance Based Simulation Data Management Framework for Computational Science Engineering Simulation Platform (계산과학공학 플랫폼을 위한 실행-이력 기반의 시뮬레이션 데이터 관리 프레임워크 설계 및 구현)

  • Ma, Jin;Lee, Sik;Cho, Kum-won;Suh, Young-kyoon
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.77-86
    • /
    • 2018
  • For the past few years, KISTI has been servicing an online simulation execution platform, called EDISON, allowing users to conduct simulations on various scientific applications supplied by diverse computational science and engineering disciplines. Typically, these simulations accompany large-scale computation and accordingly produce a huge volume of output data. One critical issue arising when conducting those simulations on an online platform stems from the fact that a number of users simultaneously submit to the platform their simulation requests (or jobs) with the same (or almost unchanging) input parameters or files, resulting in charging a significant burden on the platform. In other words, the same computing jobs lead to duplicate consumption computing and storage resources at an undesirably fast pace. To overcome excessive resource usage by such identical simulation requests, in this paper we introduce a novel framework, called IceSheet, to efficiently manage simulation data based on execution metadata, that is, provenance. The IceSheet framework captures and stores each provenance associated with a conducted simulation. The collected provenance records are utilized for not only inspecting duplicate simulation requests but also performing search on existing simulation results via an open-source search engine, ElasticSearch. In particular, this paper elaborates on the core components in the IceSheet framework to support the search and reuse on the stored simulation results. We implemented as prototype the proposed framework using the engine in conjunction with the online simulation execution platform. Our evaluation of the framework was performed on the real simulation execution-provenance records collected on the platform. Once the prototyped IceSheet framework fully functions with the platform, users can quickly search for past parameter values entered into desired simulation software and receive existing results on the same input parameter values on the software if any. Therefore, we expect that the proposed framework contributes to eliminating duplicate resource consumption and significantly reducing execution time on the same requests as previously-executed simulations.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (부도예측을 위한 KNN 앙상블 모형의 동시 최적화)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.139-157
    • /
    • 2016
  • Bankruptcy involves considerable costs, so it can have significant effects on a country's economy. Thus, bankruptcy prediction is an important issue. Over the past several decades, many researchers have addressed topics associated with bankruptcy prediction. Early research on bankruptcy prediction employed conventional statistical methods such as univariate analysis, discriminant analysis, multiple regression, and logistic regression. Later on, many studies began utilizing artificial intelligence techniques such as inductive learning, neural networks, and case-based reasoning. Currently, ensemble models are being utilized to enhance the accuracy of bankruptcy prediction. Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving the generalization ability of the classifier. Base classifiers in the ensemble must be as accurate and diverse as possible in order to enhance the generalization ability of an ensemble model. Commonly used methods for constructing ensemble classifiers include bagging, boosting, and random subspace. The random subspace method selects a random feature subset for each classifier from the original feature space to diversify the base classifiers of an ensemble. Each ensemble member is trained by a randomly chosen feature subspace from the original feature set, and predictions from each ensemble member are combined by an aggregation method. The k-nearest neighbors (KNN) classifier is robust with respect to variations in the dataset but is very sensitive to changes in the feature space. For this reason, KNN is a good classifier for the random subspace method. The KNN random subspace ensemble model has been shown to be very effective for improving an individual KNN model. The k parameter of KNN base classifiers and selected feature subsets for base classifiers play an important role in determining the performance of the KNN ensemble model. However, few studies have focused on optimizing the k parameter and feature subsets of base classifiers in the ensemble. This study proposed a new ensemble method that improves upon the performance KNN ensemble model by optimizing both k parameters and feature subsets of base classifiers. A genetic algorithm was used to optimize the KNN ensemble model and improve the prediction accuracy of the ensemble model. The proposed model was applied to a bankruptcy prediction problem by using a real dataset from Korean companies. The research data included 1800 externally non-audited firms that filed for bankruptcy (900 cases) or non-bankruptcy (900 cases). Initially, the dataset consisted of 134 financial ratios. Prior to the experiments, 75 financial ratios were selected based on an independent sample t-test of each financial ratio as an input variable and bankruptcy or non-bankruptcy as an output variable. Of these, 24 financial ratios were selected by using a logistic regression backward feature selection method. The complete dataset was separated into two parts: training and validation. The training dataset was further divided into two portions: one for the training model and the other to avoid overfitting. The prediction accuracy against this dataset was used to determine the fitness value in order to avoid overfitting. The validation dataset was used to evaluate the effectiveness of the final model. A 10-fold cross-validation was implemented to compare the performances of the proposed model and other models. To evaluate the effectiveness of the proposed model, the classification accuracy of the proposed model was compared with that of other models. The Q-statistic values and average classification accuracies of base classifiers were investigated. The experimental results showed that the proposed model outperformed other models, such as the single model and random subspace ensemble model.

A Joint Application of DRASTIC and Numerical Groundwater Flow Model for The Assessment of Groundwater Vulnerability of Buyeo-Eup Area (DRASTIC 모델 및 지하수 수치모사 연계 적용에 의한 부여읍 일대의 지하수 오염 취약성 평가)

  • Lee, Hyun-Ju;Park, Eun-Gyu;Kim, Kang-Joo;Park, Ki-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.77-91
    • /
    • 2008
  • In this study, we developed a technique of applying DRASTIC, which is the most widely used tool for estimation of groundwater vulnerability to the aqueous phase contaminant infiltrated from the surface, and a groundwater flow model jointly to assess groundwater contamination potential. The developed technique is then applied to Buyeo-eup area in Buyeo-gun, Chungcheongnam-do, Korea. The input thematic data of a depth to water required in DRASTIC model is known to be the most sensitive to the output while only a few observations at a few time schedules are generally available. To overcome this practical shortcoming, both steady-state and transient groundwater level distributions are simulated using a finite difference numerical model, MODFLOW. In the application for the assessment of groundwater vulnerability, it is found that the vulnerability results from the numerical simulation of a groundwater level is much more practical compared to cokriging methods. Those advantages are, first, the results from the simulation enable a practitioner to see the temporally comprehensive vulnerabilities. The second merit of the technique is that the method considers wide variety of engaging data such as field-observed hydrogeologic parameters as well as geographic relief. The depth to water generated through geostatistical methods in the conventional method is unable to incorporate temporally variable data, that is, the seasonal variation of a recharge rate. As a result, we found that the vulnerability out of both the geostatistical method and the steady-state groundwater flow simulation are in similar patterns. By applying the transient simulation results to DRASTIC model, we also found that the vulnerability shows sharp seasonal variation due to the change of groundwater recharge. The change of the vulnerability is found to be most peculiar during summer with the highest recharge rate and winter with the lowest. Our research indicates that numerical modeling can be a useful tool for temporal as well as spatial interpolation of the depth to water when the number of the observed data is inadequate for the vulnerability assessments through the conventional techniques.

Sensory Information Processing

  • Yoshimoto, Chiyoshi
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 1985
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70$\pm$1.32mmHg/min)compared to CF dialyzers(4.32$\pm$0.55mmHg/min)(p<0.05). However, there was no observable difference in the UFR between the two dialyzers. Neither APD nor UFR showed any significant increase with an increasing number of reuses for up to more than 20reuses. A substantial number of failures observed in APD(larger than 20mmHe/min)on the reused dialyzers(2 out of 40 CP and S out 26 C-DAK) were attributed to the Possible damage on the fibers. The CF 15-11 HFDs which failed APD test did not show changes in the UFR compared to normal dialyzers indicating that APD is a more sensitive test than UFR test to evaluate the integrity of the fibers. 30527 T00401030527 ^x For quantitative measurement of reflected light from a clinical diagnostic strip, a prototype old reflectance photometer was designed. The strip loader and cassette were made to obtain more accurate reflectance parameters. The strip was illuminated at 45˚c through optical fiber and the intensity of reflected light was determined at rectanguLat angle using a photodiode. The kubelka-munk coefficient and reflection optical density were determined ar four different wavelengths(500, 550, 570 and 610nm) for blood glucose strip. For higher concentration than 300mg/41 about glucose, a saturation state of abforbance was observed at 500, 550 and 570nm. The correlation between glucose concentration and parameters was the best at 610nm. 30535 T00401030535 ^x Radiation-induced fibrosarcoma tumors were grown on the flanks of C3H mice. The mice were divided into two groups. One group was injected with Photofrin II, intravenously (2.5mg/kg body weight). The other group received no Photofrin II. Mice from both groups were irradialed for approximately 15 minutes at 100, 300, or 500 mW/cm2 with the argon (488nm/514.5 nm), dye(628nm) and gold vapor (pulsed 628 nm) laser light. A photosensitizer behaved as an added absorber. Under our experimental conditions, the presence of Photolfrin II increased surface temperature by at least 40% and the temperature rise due to 300 mW/cm2 irradiation exceeded values for hyperthermia. Light and temperature distributions with depth were estimated by a computer model. The model demonstrated the influence of wavelength on the thermal process and proved to be a valuable tool to investigate internal temperature rise. 30536 T00401030536 ^x We investigated the structural geometry of thirty-eight Korean femurs. The purpose of this study is to identify major geometrical differences between Korean femurs 3nd others that we believe belong to Caucasians so that we would be able to get insights into the femoral component design that fits Asians including Koreans. We utilized computerized tomography (CT) images of femurs extracted from cadavers. The CT images were transformed into bitmap data by using a film scanner, and then analyzed by using a commercially available software called Image v.1.0 and a Macintosh IIci computer.The resulting data were compared with already published data. The major results show that the geometry of the Korean femurs is significantly different from that of Caucasians: (1) the anteversion angle and the canal flare index are greater by the amount of approximately 8˚ and 0.5, respectively, (2) the shape of the isthmus cross section is more round, and (3) the distance between the teaser trochanter and the proximal border of the isthmus is shelter by about 15 mm. The results suggested that the femoral component suitable for Asians should be different from the currently-used components designed and manufactured mostly by European or American companies. 30537 T00401030537 ^x It is well known that nonlinear propagation characteristics of the wave in the tissue may give very useful information for the medical diagnoisis. In this paper, a new method to detect nonlinear propagation characteristics of the internal vibration in the tissue for the low frequency mechanical vibration by using bispectral analysis is proposed. In the method, low frequency vibration of f0( = 100Hz) is applied on the surface of the object, and the waveform of the internal vibration x (t) is measured from Doppler frequency modulation of silmultaneously transmitted probing ultrasonic waves. Then, the bispectra of the signal x (t) at the frequencies (f0, f0) and (f0, 2f0) are calculated to estimate the nonlinear propagation characteristics as their magnitude ratio, w here since bispectrum is free from the gaussian additive noise we can get the value with high S/N. Basic experimental system is constructed by using 3.0 MHz probing ultrasonic waves and the several experiments are carried out for some phantoms. Results show the superiority of the proposed method to the conventional method using power spectrum and also its usefulness for the tissue characterization. 30541 T00401030541 ^x This paper describes the implementation of a computerized radial pulse diagnosis by aids of a clinical expert. On this base, we composed of the radial pulse diagnosis system in korean traditional medicine. The system composed of a radial pulse wave detection system and a radial pulse diagnosis system. With a detection system, we detected Inyoung and Cheongu radial pulse wave and processed it. Then, we have got the characteristic parameters of radial pulse wave and also quantified that according to the method of Inyoung-Cheongu Comparison Radial Pulse Diagnosis. We defined the jugement standard of radial pulse diagnosis system and then we confirmed the possibility for realization of automatic radial pulse diagnosis in korean traditional medicine. 30545 T00401030545 ^x Microspheres are expected to be applied to biomedical areas such as solid-phase immunoassays, drug delivery systems, immunomagnetic cell separation. To synthesize microspheres for biomedical application, "two stage shot growth method" was developed. The uniformity ratio of synthesized microspheres was always smaller than 1.05. And the surface charge density (or the number of ionizable functional groups) of the microspheres synthesized by "two stage shot growth method" was 6~13 times higher than that of the microspheres synthesized by conventional seeded batch copolymerization. As a previous step for biomedical application, adsorption experiments of bovine albumin on microspheres were carried out under various conditions. The maximum adsorbed amount was obtained in the neighborhood of pH 4.5. Isoelectric point of bovine albumin is pH 5.0, so experimental result shows that it shifted to acid area. The adsorption isotherm was obtained, the plateau region was always reached at 2.Og/L (bulk concentration of bovine albumin).The effect of the kind and the amount of surface functional group was also examined. 30575 T00401030575 ^x A medical image workstation was developed using multimedia technique. The system based on PC-486DX was designed to acquire medical images produced by medical imaging instruments and related audio information, that is, doctors' reporting results. Input information was processed and analyzed, then the results were presented in the form of graph and animation. All the informations of the system were hierarchically related with the image as the apex. Processing and analysis algorithms were implemented so that the diagnostic accuracy could be improved. The diagnosed information can be transferred for patient diagnosis through LAN(local area network). 30592 T00401030592 ^x In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensional optic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the intfrared thermography system composed of the proposed optic system has the temperature resolution of 0.1˚c under the spatial resolution of lmrad, the image matrix size of 256 X 240, and tile imaging time of 4 seconds. 30593 T00401030593 ^x In this paper, MIIS (Medical Image Information System) has been designed and implemented using INGRES RDBMS, which is based on a client/server architecture. The implemented system allows users to register and retrieve patient information, medical images and diagnostic reports. It also provides the function to display these information on workstation windows simultaneously by using the designed menu-driven graphic user interface. The medical image compression/decompression techniques are implemented and integrated into the medical image database system for the efficient data storage and the fast access through the network. 30594 T00401030594 ^x In this paper, computerized BEAM was implemented for the space domain analysis of EEG. Trans-formation from temporal summation to two-dimensional mappings is formed by 4 nearest point inter-polaton method. Methods of representation of BEAM are two. One is dot density method which classify brain electrical potential 9 levels by dot density of gray levels and the other is colour method which classify brain electrical 12 levels by red-green colours. In this BEAM, instantaneous change and average energy distribution over any arbitrary time interval of brain electrical activity could be observed and analyzed easily. In the frequency domain, the distribution of energy spectrum of a special band can easily be distinguished normality and abnormality. 30608 T00401030608 ^x Laboratory information system (LIS) is a key tool to manage laboratory data in clinical pathology. Our department has developed an information system for routine hematology using down-sized computer system. We have used an IBM 486 compatible PC with 16MB main memory, 210 MB hard disk drive, 9 RS-232C port and 24 pin dot printer. The operating system and database management system were SCO UNIX and SCO foxbase, respectively. For program development, we used Xbase language provided by SCO foxbase. The C language was used for interface purpose. To make the system use friendly, pull-down menu was used. The system connected to our hospital information system via application program interface (API), so the information related to patient and request details is automatically transmitted to our computer. Our system interfaced with fwd complete blood count analyzers(Sysmex NE-8000 and Coulter STKS) for unidirectional data tansmission from analyzer to computer. The authors suggests that this system based on down-sized computer could provide a progressive approach to total LIS based on local area network, and the implemented system could serve as a model for other hospital's LIS for routine hematology. 30609 T00401030609 ^x To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed a composite that is consisted of calcium phosphate and collagen. To use as the structural matrix of the composite, collagen was purified from human umbilical cord. The obtained collagen was treated by pepsin to remove telopeptides, and finally, the immune-free atelocollagen was produced: The cross linked atelocollagen was highly resistant to the collagenase induced collagenolysis. The cross linked collagen demonstrated an improved tensile strength. 30618 T00401030618 ^x This paper is a study on the design of adptive filter for QRS complex detection. We propose a simple adaptive algorithm to increase capability of noise cancelation in QRS complex detection with two stage adaptive filter. At the first stage, background noise is removed and at the next stage, only spectrum of QRS complex components is passed. Two adaptive filters can afford to keep track of the changes of both noise and QRS complex. Each adaptive filter consists of prediction error filter and FIR filter The impulse response of FIR filter uses coefficients of prediction error filter. The detection rates for 105 and 108 of MIT/BIH data base were 99.3% and 97.4% respectively. 30619 T00401030619 ^x To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed and produced a composite that is consisted of calcium phosphate and collagen. Human umbilical cord origin pepsin treated type I atelocollagen was used as the structural matrix, by which sintered or non-sintered carbonate apatite was encapsulated to form an inorganic-organic composite. With cross linking atelocollagen by UV ray irradiation, the resistance to both compressive and tensile strength was increased. Collagen degradation by the collagenase induced collagenolysis was also decreased. 30620 T00401030620 ^x We have developed a monoleaflet polymer valve as an inexpensive and viable alternative, especially for short-term use in the ventricular assist device or total artificial heart. The frame and leaflet of the polymer valve were made from polyurethane, To evaluate the hemodynamic performance of the polymer valve a comparative study of flow dynamics past a polymer valve and a St. Jude Medical prosthetic valve under physiological pulsatile flow conditions in vitro was made. Comparisons between the valves were made on the transvalvular pressure drop, regurgitation volume and maximum valve opening area. The polymer valve showed smaller regurgitation volume and transvalvular pressure drop compared to the mechanical valve at higher heart rate. The results showed that the functional characteristics of the polymer valve compared favorably with those of the mechanical valve at higher heart rate. 30621 T00401030621 ^x Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd:YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as Br.), and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased.To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained. 30622 T00401030622 ^x N1 and N2 gross neural action potentials were measured from the round window of the guinea pig cochlea at the onset of the acoustic stimuli. N1-N2 audiograms were made by means of regulating stimulant intensities in order to produce constant N1-N2 potentials as criteria for different input tone pip frequencies. The lowest threshold was measured with an input tone pip I5 dB SPL in intensity and 12 KHz in frequency when the animal was in normal physiological condition. The procedure of experimental measurements is explained in detail. This experimental approach is very useful for the investigation of the Cochlear function. Both noN1inear and active functions of the Cochlea can be monitored by N1-N2 audiograms. 30623 T00401030623 ^x In electrical impedance tomography(EIT), we use boundary current and voltage measurements toprovide the information about the cross-sectional distribution of electrical impedance or resistivity. One of the major problems in EIT has been the inaccessibility of internal voltage or current data in finding the internal impedance values. We propose a new image reconstruction method using internal current density data measured by NMR. We obtained a two-dimensional current density distribution within a phantom by processing the real and imaginary MR images from a 4.77 NMR machine. We implemented a resistivity mage reconstruction algorithm using the finite element method and sensitivity matrix. We presented computer simulation results of the mage reconstruction algorithm and furture direction of the research. 30624 T00401030624 ^x A new method of digital image analysis technique for discrimination of cancer cell was presented in this paper. The object image was the Thyroid eland cells image that was diagnosed as normal and abnormal (two types of abnormal: follicular neoplastic cell, and papillary neoplastic cell), respectively. By using the proposed region segmentation algorithm, the cells were segmented into nucleus. The 16 feature parameters were used to calculate the features of each nucleus. A9 a consequence of using dominant feature parameters method proposed in this paper, discrimination rate of 91.11% was obtained for Thyroid Gland cells. 30625 T00401030625 ^x An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate electromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocneminus m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical stimulator restored partially gait function in paraplegic patients. 30626 T00401030626 ^x Two-Dimensional modelling of the Cochlear biomechanics is presented in this paper. The Laplace partial differential equation which represents the fluid mechanics of the Cochlea has been transformed into two-dimensional electrical transmission line. The procedure of this transformation is explained in detail. The comparison between one and two dimensional models is also presented. This electrical modelling of the basilar membrane (BM) is clearly useful for the next approach to the further. Development of active elements which are essential in the producing of the sharp tuning of the BM. This paper shows that two-dimension model is qualitatively better than one-dimensional model both in amplitude and phase responses of the BM displacement. The present model is only for frequency response. However because the model is electrical, the two-dimensional transmission line model can be extended to time response without any difficult. 30627 T00401030627 ^x A method has been proposed for the fully automatic detection of left ventricular endocardial boundary in 2D short axis echocardiogram using geometric model. The procedure has the following three distinct stages. First, the initial center is estimated by the initial center estimation algorithm which is applied to decimated image. Second, the center estimation algorithm is applied to original image and then best-fit elliptic model estimation is processed. Third, best-fit boundary is detected by the cost function which is based on the best-fit elliptic model. The proposed method shows effective result without manual intervention by a human operator. 30628 T00401030628 ^x The intelligent trajectory control method that controls moving direction and average velocity for a prosthetic arm is proposed by pattern recognition and force estimations using EMG signals. Also, we propose the real time trajectory planning method which generates continuous accelleration paths using 3 stage linear filters to minimize the impact to human body induced by arm motions and to reduce the muscle fatigue. We use combination of MLP and fuzzy filter for pattern recognition to estimate the direction of a muscle and Hogan's method for the force estimation. EMG signals are acquired by using a amputation simulator and 2 dimensional joystick motion. The simulation results of proposed prosthetic arm control system using the EMf signals show that the arm is effectively followed the desired trajectory depended on estimated force and direction of muscle movements. 30638 T00401030638 ^x A new neural network architecture for the recognition of patterns from images is proposed, which is partially based on the results of physiological studies. The proposed network is composed of multi-layers and the nerve cells in each layer are connected by spatial filters which approximate receptive fields in optic nerve fields. In the proposed method, patterns recognition for complicated images is carried out using global features as well as local features such as lines and end-points. A new generating method of matched filers representing global features is proposed in this network. 30659 T00401030659 ^x An implementation scheme of the magnetic nerve stimulator using a switching mode power supply is proposed. By using a switching mode power supply rather than a conventional linear power supply for charging high voltage capacitors, the weight and size of the magnetic nerve stimulator can be considerably reduced. Maximum output voltage of the developed magnetic nerve stimulator using the switching mode power supply is 3, 000 volts and switching time is about 100 msec. Experimental results or human nerve stimulations using the developed stimulator are presented. 30768 T00401030768 ^x In this paper, we describe the design methodology and specifications of the developed module-based bedside monitors for patient monitoring. The bedside monitor consists of a main unit and module cases with various parameter modules. The main unit includes a 12.1" TFT color LCD, a main CPU board, and peripherals such as a module controller, Ethernet LAN card, video card, rotate/push button controller, etc. The main unit can connect at maximum three module cases each of which can accommodate up to 7 parameter modules. They include the modules for electrocardiograph, respiration, invasive blood pressure, noninvasive blood pressure, temperature, and SpO2 with Plethysmograph.SpO2 with Plethysmograph.

  • PDF

High Resolution HC$_3$N Observations toward the Central Region of Sagittarius B2

  • H.S-Ching;Oh, M.ishi;M.Morimoto
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.10a
    • /
    • pp.17-17
    • /
    • 1993
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70${\pm}$1.32mmHg/min)compared to CF dialyzers(4.32${\pm}$0.55mmHg/min)(p<0.05). However, there was no observable difference in the UFR between the two dialyzers. Neither APD nor UFR showed any significant increase with an increasing number of reuses for up to more than 20reuses. A substantial number of failures observed in APD(larger than 20mmHe/min)on the reused dialyzers(2 out of 40 CP and S out 26 C-DAK) were attributed to the Possible damage on the fibers. The CF 15-11 HFDs which failed APD test did not show changes in the UFR compared to normal dialyzers indicating that APD is a more sensitive test than UFR test to evaluate the integrity of the fibers. 30527 T00401030527 ^x For quantitative measurement of reflected light from a clinical diagnostic strip, a prototype old reflectance photometer was designed. The strip loader and cassette were made to obtain more accurate reflectance parameters. The strip was illuminated at 45˚c through optical fiber and the intensity of reflected light was determined at rectanguLat angle using a photodiode. The kubelka-munk coefficient and reflection optical density were determined ar four different wavelengths(500,550,570 and 610nm) for blood glucose strip. For higher concentration than 300mg/41 about glucose, a saturation state of abforbance was observed at 500,550 and 570nm. The correlation between glucose concentration and parameters was the best at 610nm. 30535 T00401030535 ^x Radiation-induced fibrosarcoma tumors were grown on the flanks of C3H mice. The mice were divided into two groups. One group was injected with Photofrin II, intravenously (2.5mg/kg body weight). The other group received no Photofrin II. Mice from both groups were irradialed for approximately 15 minutes at 100,300, or 500 mW/cm2 with the argon (488nm/514.5 nm), dye(628nm) and gold vapor (pulsed 628 nm) laser light. A photosensitizer behaved as an added absorber. Under our experimental conditions, the presence of Photolfrin II increased surface temperature by at least 40% and the temperature rise due to 300 mW/cm2 irradiation exceeded values for hyperthermia. Light and temperature distributions with depth were estimated by a computer model. The model demonstrated the influence of wavelength on the thermal process and proved to be a valuable tool to investigate internal temperature rise. 30536 T00401030536 ^x We investigated the structural geometry of thirty-eight Korean femurs. The purpose of this study is to identify major geometrical differences between Korean femurs 3nd others that we believe belong to Caucasians so that we would be able to get insights into the femoral component design that fits Asians including Koreans. We utilized computerized tomography (CT) images of femurs extracted from cadavers. The CT images were transformed into bitmap data by using a film scanner, and then analyzed by using a commercially available software called Image v.1.0 and a Macintosh IIci computer.The resulting data were compared with already published data. The major results show that the geometry of the Korean femurs is significantly different from that of Caucasians: (1) the anteversion angle and the canal flare index are greater by the amount of approximately 8˚ and 0.5, respectively, (2) the shape of the isthmus cross section is more round, and (3) the distance between the teaser trochanter and the proximal border of the isthmus is shelter by about 15 mm. The results suggested that the femoral component suitable for Asians should be different from the currently-used components designed and manufactured mostly by European or American companies. 30537 T00401030537 ^x It is well known that nonlinear propagation characteristics of the wave in the tissue may give very useful information for the medical diagnoisis. In this paper, a new method to detect nonlinear propagation characteristics of the internal vibration in the tissue for the low frequency mechanical vibration by using bispectral analysis is proposed. In the method, low frequency vibration of f0( = 100Hz) is applied on the surface of the object, and the waveform of the internal vibration x (t) is measured from Doppler frequency modulation of silmultaneously transmitted probing ultrasonic waves. Then, the bispectra of the signal x (t) at the frequencies (f0, f0) and (f0, 2f0) are calculated to estimate the nonlinear propagation characteristics as their magnitude ratio, w here since bispectrum is free from the gaussian additive noise we can get the value with high S/N. Basic experimental system is constructed by using 3.0 MHz probing ultrasonic waves and the several experiments are carried out for some phantoms. Results show the superiority of the proposed method to the conventional method using power spectrum and also its usefulness for the tissue characterization. 30541 T00401030541 ^x This paper describes the implementation of a computerized radial pulse diagnosis by aids of a clinical expert. On this base, we composed of the radial pulse diagnosis system in korean traditional medicine. The system composed of a radial pulse wave detection system and a radial pulse diagnosis system. With a detection system, we detected Inyoung and Cheongu radial pulse wave and processed it. Then, we have got the characteristic parameters of radial pulse wave and also quantified that according to the method of Inyoung-Cheongu Comparison Radial Pulse Diagnosis. We defined the jugement standard of radial pulse diagnosis system and then we confirmed the possibility for realization of automatic radial pulse diagnosis in korean traditional medicine. 30545 T00401030545 ^x Microspheres are expected to be applied to biomedical areas such as solid-phase immunoassays, drug delivery systems, immunomagnetic cell separation. To synthesize microspheres for biomedical application, "two stage shot growth method" was developed. The uniformity ratio of synthesized microspheres was always smaller than 1.05. And the surface charge density (or the number of ionizable functional groups) of the microspheres synthesized by "two stage shot growth method" was 6~13 times higher than that of the microspheres synthesized by conventional seeded batch copolymerization. As a previous step for biomedical application, adsorption experiments of bovine albumin on microspheres were carried out under various conditions. The maximum adsorbed amount was obtained in the neighborhood of pH 4.5. Isoelectric point of bovine albumin is pH 5.0, so experimental result shows that it shifted to acid area. The adsorption isotherm was obtained, the plateau region was always reached at 2.Og/L (bulk concentration of bovine albumin).The effect of the kind and the amount of surface functional group was also examined. 30575 T00401030575 ^x A medical image workstation was developed using multimedia technique. The system based on PC-486DX was designed to acquire medical images produced by medical imaging instruments and related audio information, that is, doctors' reporting results. Input information was processed and analyzed, then the results were presented in the form of graph and animation. All the informations of the system were hierarchically related with the image as the apex. Processing and analysis algorithms were implemented so that the diagnostic accuracy could be improved. The diagnosed information can be transferred for patient diagnosis through LAN(local area network). 30592 T00401030592 ^x In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensional optic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the intfrared thermography system composed of the proposed optic system has the temperature resolution of 0.1˚c under the spatial resolution of lmrad, the image matrix size of 256 X 240, and tile imaging time of 4 seconds. 30593 T00401030593 ^x In this paper, MIIS (Medical Image Information System) has been designed and implemented using INGRES RDBMS, which is based on a client/server architecture. The implemented system allows users to register and retrieve patient information, medical images and diagnostic reports. It also provides the function to display these information on workstation windows simultaneously by using the designed menu-driven graphic user interface. The medical image compression/decompression techniques are implemented and integrated into the medical image database system for the efficient data storage and the fast access through the network. 30594 T00401030594 ^x In this paper, computerized BEAM was implemented for the space domain analysis of EEG. Trans-formation from temporal summation to two-dimensional mappings is formed by 4 nearest point inter-polaton method. Methods of representation of BEAM are two. One is dot density method which classify brain electrical potential 9 levels by dot density of gray levels and the other is colour method which classify brain electrical 12 levels by red-green colours. In this BEAM, instantaneous change and average energy distribution over any arbitrary time interval of brain electrical activity could be observed and analyzed easily. In the frequency domain, the distribution of energy spectrum of a special band can easily be distinguished normality and abnormality. 30608 T00401030608 ^x Laboratory information system (LIS) is a key tool to manage laboratory data in clinical pathology. Our department has developed an information system for routine hematology using down-sized computer system. We have used an IBM 486 compatible PC with 16MB main memory, 210 MB hard disk drive, 9 RS-232C port and 24 pin dot printer. The operating system and database management system were SCO UNIX and SCO foxbase, respectively. For program development, we used Xbase language provided by SCO foxbase. The C language was used for interface purpose. To make the system use friendly, pull-down menu was used. The system connected to our hospital information system via application program interface (API), so the information related to patient and request details is automatically transmitted to our computer. Our system interfaced with fwd complete blood count analyzers(Sysmex NE-8000 and Coulter STKS) for unidirectional data tansmission from analyzer to computer. The authors suggests that this system based on down-sized computer could provide a progressive approach to total LIS based on local area network, and the implemented system could serve as a model for other hospital's LIS for routine hematology. 30609 T00401030609 ^x To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed a composite that is consisted of calcium phosphate and collagen. To use as the structural matrix of the composite, collagen was purified from human umbilical cord. The obtained collagen was treated by pepsin to remove telopeptides, and finally, the immune-free atelocollagen was produced: The cross linked atelocollagen was highly resistant to the collagenase induced collagenolysis. The cross linked collagen demonstrated an improved tensile strength. 30618 T00401030618 ^x This paper is a study on the design of adptive filter for QRS complex detection. We propose a simple adaptive algorithm to increase capability of noise cancelation in QRS complex detection with two stage adaptive filter. At the first stage, background noise is removed and at the next stage, only spectrum of QRS complex components is passed. Two adaptive filters can afford to keep track of the changes of both noise and QRS complex. Each adaptive filter consists of prediction error filter and FIR filter The impulse response of FIR filter uses coefficients of prediction error filter. The detection rates for 105 and 108 of MIT/BIH data base were 99.3% and 97.4% respectively. 30619 T00401030619 ^x To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed and produced a composite that is consisted of calcium phosphate and collagen. Human umbilical cord origin pepsin treated type I atelocollagen was used as the structural matrix, by which sintered or non-sintered carbonate apatite was encapsulated to form an inorganic-organic composite. With cross linking atelocollagen by UV ray irradiation, the resistance to both compressive and tensile strength was increased. Collagen degradation by the collagenase induced collagenolysis was also decreased. 30620 T00401030620 ^x We have developed a monoleaflet polymer valve as an inexpensive and viable alternative, especially for short-term use in the ventricular assist device or total artificial heart. The frame and leaflet of the polymer valve were made from polyurethane, To evaluate the hemodynamic performance of the polymer valve a comparative study of flow dynamics past a polymer valve and a St. Jude Medical prosthetic valve under physiological pulsatile flow conditions in vitro was made. Comparisons between the valves were made on the transvalvular pressure drop, regurgitation volume and maximum valve opening area. The polymer valve showed smaller regurgitation volume and transvalvular pressure drop compared to the mechanical valve at higher heart rate. The results showed that the functional characteristics of the polymer valve compared favorably with those of the mechanical valve at higher heart rate. 30621 T00401030621 ^x Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd:YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as Br.), and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased.To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained. 30622 T00401030622 ^x N1 and N2 gross neural action potentials were measured from the round window of the guinea pig cochlea at the onset of the acoustic stimuli. N1-N2 audiograms were made by means of regulating stimulant intensities in order to produce constant N1-N2 potentials as criteria for different input tone pip frequencies. The lowest threshold was measured with an input tone pip I5 dB SPL in intensity and 12 KHz in frequency when the animal was in normal physiological condition. The procedure of experimental measurements is explained in detail. This experimental approach is very useful for the investigation of the Cochlear function. Both noN1inear and active functions of the Cochlea can be monitored by N1-N2 audiograms. 30623 T00401030623 ^x In electrical impedance tomography(EIT), we use boundary current and voltage measurements toprovide the information about the cross-sectional distribution of electrical impedance or resistivity. One of the major problems in EIT has been the inaccessibility of internal voltage or current data in finding the internal impedance values. We propose a new image reconstruction method using internal current density data measured by NMR. We obtained a two-dimensional current density distribution within a phantom by processing the real and imaginary MR images from a 4.77 NMR machine. We implemented a resistivity mage reconstruction algorithm using the finite element method and sensitivity matrix. We presented computer simulation results of the mage reconstruction algorithm and furture direction of the research. 30624 T00401030624 ^x A new method of digital image analysis technique for discrimination of cancer cell was presented in this paper. The object image was the Thyroid eland cells image that was diagnosed as normal and abnormal (two types of abnormal: follicular neoplastic cell, and papillary neoplastic cell), respectively. By using the proposed region segmentation algorithm, the cells were segmented into nucleus. The 16 feature parameters were used to calculate the features of each nucleus. A9 a consequence of using dominant feature parameters method proposed in this paper, discrimination rate of 91.11% was obtained for Thyroid Gland cells. 30625 T00401030625 ^x An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate electromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocneminus m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical stimulator restored partially gait function in paraplegic patients. 30626 T00401030626 ^x Two-Dimensional modelling of the Cochlear biomechanics is presented in this paper. The Laplace partial differential equation which represents the fluid mechanics of the Cochlea has been transformed into two-dimensional electrical transmission line. The procedure of this transformation is explained in detail. The comparison between one and two dimensional models is also presented. This electrical modelling of the basilar membrane (BM) is clearly useful for the next approach to the further. Development of active elements which are essential in the producing of the sharp tuning of the BM. This paper shows that two-dimension model is qualitatively better than one-dimensional model both in amplitude and phase responses of the BM displacement. The present model is only for frequency response. However because the model is electrical, the two-dimensional transmission line model can be extended to time response without any difficult. 30627 T00401030627 ^x A method has been proposed for the fully automatic detection of left ventricular endocardial boundary in 2D short axis echocardiogram using geometric model. The procedure has the following three distinct stages. First, the initial center is estimated by the initial center estimation algorithm which is applied to decimated image. Second, the center estimation algorithm is applied to original image and then best-fit elliptic model estimation is processed. Third, best-fit boundary is detected by the cost function which is based on the best-fit elliptic model. The proposed method shows effective result without manual intervention by a human operator. 30628 T00401030628 ^x The intelligent trajectory control method that controls moving direction and average velocity for a prosthetic arm is proposed by pattern recognition and force estimations using EMG signals. Also, we propose the real time trajectory planning method which generates continuous accelleration paths using 3 stage linear filters to minimize the impact to human body induced by arm motions and to reduce the muscle fatigue. We use combination of MLP and fuzzy filter for pattern recognition to estimate the direction of a muscle and Hogan's method for the force estimation. EMG signals are acquired by using a amputation simulator and 2 dimensional joystick motion. The simulation results of proposed prosthetic arm control system using the EMf signals show that the arm is effectively followed the desired trajectory depended on estimated force and direction of muscle movements. 30638 T00401030638 ^x A new neural network architecture for the recognition of patterns from images is proposed, which is partially based on the results of physiological studies. The proposed network is composed of multi-layers and the nerve cells in each layer are connected by spatial filters which approximate receptive fields in optic nerve fields. In the proposed method, patterns recognition for complicated images is carried out using global features as well as local features such as lines and end-points. A new generating method of matched filers representing global features is proposed in this network. 30659 T00401030659 ^x An implementation scheme of the magnetic nerve stimulator using a switching mode power supply is proposed. By using a switching mode power supply rather than a conventional linear power supply for charging high voltage capacitors, the weight and size of the magnetic nerve stimulator can be considerably reduced. Maximum output voltage of the developed magnetic nerve stimulator using the switching mode power supply is 3,000 volts and switching time is about 100 msec. Experimental results or human nerve stimulations using the developed stimulator are presented. 30768 T00401030768 ^x In this paper, we describe the design methodology and specifications of the developed module-based bedside monitors for patient monitoring. The bedside monitor consists of a main unit and module cases with various parameter modules. The main unit includes a 12.1" TFT color LCD, a main CPU board, and peripherals such as a module controller, Ethernet LAN card, video card, rotate/push button controller, etc. The main unit can connect at maximum three module cases each of which can accommodate up to 7 parameter modules. They include the modules for electrocardiograph, respiration, invasive blood pressure, noninvasive blood pressure, temperature, and SpO2 with Plethysmograph.

  • PDF

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.