• Title/Summary/Keyword: Input and Output Parameters

Search Result 889, Processing Time 0.03 seconds

Temperature Control by On-line CFCM-based Adaptive Neuro-Fuzzy System (온 라인 CFCM 기반 적응 뉴로-퍼지 시스템에 의한 온도제어)

  • 윤기후;곽근창
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.414-422
    • /
    • 2002
  • In this paper, we propose a new method of adaptive neuro-fuzzy control using CFCM(Conditional Fuzzy c-means) clustering and fuzzy equalization method to deal with adaptive control problem. First, in the off-line design, CFCM clustering performs structure identification of adaptive neuro-fuzzy control with the homogeneous properties of the given input and output data. The parameter identification are established by hybrid learning using back-propagation algorithm and RLSE(Recursive Least Square Estimate). In the on-line design, the premise and consequent parameters are tuned to RLSE with forgetting factor due to a characteristic of time variant. Finally, we applied the proposed method to the water temperature control system and obtained better results than previous works such as fuzzy control.

Design and Implementation of Isolator for PCS Phone (PCS단말기용 아이솔레이터의 설계제작)

  • Gwon, Won-Hyeon;Kim, Tae-Hyeon;Lee, Yeong-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.3
    • /
    • pp.49-57
    • /
    • 2000
  • In this paper, lumped-element isolator is analyzed and designed using the scattering matrix approach. Using the designed parameters, compact isolator with 7.0x7.0x2.3 mm$^3$ dimensions is fabricated and tested in 1.765GHz PCS phone band. Implemented isolator shows 29.95dB isolation characteristic at center frequency and has 0.35dB insertion loss in overall 30MHz operating bandwidth. Return losses of input and output port are measured below -19 dB. Experimental results show that the implemented isolator has better performances than the conventional one.

  • PDF

Single-channel Demodulation Algorithm for Non-cooperative PCMA Signals Based on Neural Network

  • Wei, Chi;Peng, Hua;Fan, Junhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3433-3446
    • /
    • 2019
  • Aiming at the high complexity of traditional single-channel demodulation algorithm for PCMA signals, a new demodulation algorithm based on neural network is proposed to reduce the complexity of demodulation in the system of non-cooperative PCMA communication. The demodulation network is trained in this paper, which combines the preprocessing module and decision module. Firstly, the preprocessing module is used to estimate the initial parameters, and the auxiliary signals are obtained by using the information of frequency offset estimation. Then, the time-frequency characteristic data of auxiliary signals are obtained, which is taken as the input data of the neural network to be trained. Finally, the decision module is used to output the demodulated bit sequence. Compared with traditional single-channel demodulation algorithms, the proposed algorithm does not need to go through all the possible values of transmit symbol pairs, which greatly reduces the complexity of demodulation. The simulation results show that the trained neural network can greatly extract the time-frequency characteristics of PCMA signals. The performance of the proposed algorithm is similar to that of PSP algorithm, but the complexity of demodulation can be greatly reduced through the proposed algorithm.

A Novel Multi-focus Image Fusion Scheme using Nested Genetic Algorithms with "Gifted Genes" (재능 유전인자를 갖는 네스티드 유전자 알고리듬을 이용한 새로운 다중 초점 이미지 융합 기법)

  • Park, Dae-Chul;Atole, Ronnel R.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.75-87
    • /
    • 2009
  • We propose in this paper a novel approach to image fusion in which the fusion rule is guided by optimizing an image clarity function. A Genetic Algorithm is used to stochastically select, comparative to the clarity function, the optimum block from among the source images. A novel nested Genetic Algorithm with gifted individuals found through bombardment of genes by the mutation operator is designed and implemented. Convergence of the algorithm is analytically and empirically examined and statistically compared (MANOVA) with the canonical GA using 3 test functions commonly used in the GA literature. The resulting GA is invariant to parameters and population size, and a minimal size of 20 individuals is found to be sufficient in the tests. In the fusion application, each individual in the population is a finite sequence of discrete values that represent input blocks. Performance of the proposed technique applied to image fusion experiments, is characterized in terms of Mutual Information (MI) as the output quality measure. The method is tested with C=2 input images. The results of the proposed scheme indicate a practical and attractive alternative to current multi-focus image fusion techniques.

  • PDF

Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors (예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.

The Design of Polynomial RBF Neural Network by Means of Fuzzy Inference System and Its Optimization (퍼지추론 기반 다항식 RBF 뉴럴 네트워크의 설계 및 최적화)

  • Baek, Jin-Yeol;Park, Byaung-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.399-406
    • /
    • 2009
  • In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.

Self-Sensing Actuator Using an Ion-Polymer Metal Composite Based on a Neural Network Model (뉴럴네트워크 모델 기반의 IPMC 셀프 센싱 액추에이터)

  • Yoon, Jong-Il;Truong, Dinh Quang;Ahn, Kyoung-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1865-1870
    • /
    • 2010
  • We develop an IPMC actuator with self-sensing behavior based on an accurate neural network model (NNM). The supplied voltage and voltage signals measured at two determined points on both sides of the IPMC sheet are used as inputs to the NNM. A CCD laser displacement sensor is installed in the rig for accurate measurement of the IPMC tip displacement that is used as the training output of the proposed NNM. Consequently, the NNM model is used to estimate the IPMC tip displacement; the NNM parameters are optimized by the collected input/output training data. The effectiveness of the model for the IPMC actuator is then verified by modeling results.

Low Index Contrast Planar SiON Waveguides Deposited by PECVD (PECVD 법에 의해 제작된 저굴절률 차이 평판 SiON광도파로)

  • Kim, Yong-Tak;Yoon, Seok-Gyu;Yoon, Dae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.178-181
    • /
    • 2005
  • Silicon oxynitride (SiON) layers deposited upon a $SiO_2/Si$ buffer layer placed upon silicon wafers have been obtained by using PECVD from $SiH_4,\;N_2O$, and $N_2$. It can be seen that the refractive index, measured by using a prism coupler, for the SiON films can be varied between 1.4480 and 1.4958 at a wavelength of 1552 nm by changing the process parameters. Optical planar waveguides with a thickness of $6{\mu}m$ and a refractive index contrast ($\Delta$n) of $0.36\% have been deposited. Also, etching experiments were performed using ICP dry etching equipment on thick SiON films grown onto Si substrates covered by a thick $SiO_2$ buffer layer. A polarization maintaining single-mode fiber was used for the input and a microscope objective for the output at $1.55{\mu}m$. As a result, a low index contrast SiON based waveguide is fabricated with easily adjustable refractive index of core layer. It illustrates that the output intensity mode is a waveguiding single-mode.

A Study on Calibration of PRICE Model Using Historical Cost Data (실적자료를 활용한 PRICE 모델의 보정방안 연구)

  • Jung, Tae-Kyun;Lee, Yong-Bok;Kang, Sung-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • In Korea weapon system acquisition processes, it's required a cost estimation report obtained from a commercial cost model. The PRICE model is generally used as a cost estimation model in Korea. However, the model uses American historical R&D data and it's output cost component is different from our cost component of defense accounting system. Also, we found that estimating results show about 10% of difference when we comparing with actual costs in 44 finished weapon acquisition projects. There are some limitations in calibration to increase an accuracy of the PRICE model because it's difficult obtain good real input data, detailed cost and technical data in low level WBS. So, only 8% of the defense R&D projects are calibrated and validation of calibration results is more difficult. Therefore, we studied the standard calibration process and performed the calibration about the MCPLXS/E parameters of the PRICE model based on actual cost data. In order to obtain a good calculation result, we collected the actual material costs from the defense industry companies. Our results can be used for an reference in similar weapon system R&D and production cost estimation cases.

Pattern Recognition using Robust Feedforward Neural Networks (로버스트 다층전방향 신경망을 이용한 패턴인식)

  • Hwang, Chang-Ha;Kim, Sang-Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.345-355
    • /
    • 1998
  • The back propagation(BP) algorithm allows multilayer feedforward neural networks to learn input-output mappings from training samples. It iteratively adjusts the network parameters(weights) to minimize the sum of squared approximation errors using a gradient descent technique. However, the mapping acquired through the BP algorithm may be corrupt when errorneous training data are employed. In this paper two types of robust backpropagation algorithms are discussed both from a theoretical point of view and in the case studies of nonlinear regression function estimation and handwritten Korean character recognition. For future research we suggest Bayesian learning approach to neural networks and compare it with two robust backpropagation algorithms.

  • PDF