• Title/Summary/Keyword: Input and Output Parameters

Search Result 889, Processing Time 0.031 seconds

SAMPLING BASED UNCERTAINTY ANALYSIS OF 10 % HOT LEG BREAK LOCA IN LARGE SCALE TEST FACILITY

  • Sengupta, Samiran;Dubey, S.K.;Rao, R.S.;Gupta, S.K.;Raina, V.K
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.690-703
    • /
    • 2010
  • Sampling based uncertainty analysis was carried out to quantify uncertainty in predictions of best estimate code RELAP5/MOD3.2 for a thermal hydraulic test (10% hot leg break LOCA) performed in the Large Scale Test Facility (LSTF) as a part of an IAEA coordinated research project. The nodalisation of the test facility was qualified for both steady state and transient level by systematically applying the procedures led by uncertainty methodology based on accuracy extrapolation (UMAE); uncertainty analysis was carried out using the Latin hypercube sampling (LHS) method to evaluate uncertainty for ten input parameters. Sixteen output parameters were selected for uncertainty evaluation and uncertainty band between $5^{th}$ and $95^{th}$ percentile of the output parameters were evaluated. It was observed that the uncertainty band for the primary pressure during two phase blowdown is larger than that of the remaining period. Similarly, a larger uncertainty band is observed relating to accumulator injection flow during reflood phase. Importance analysis was also carried out and standard rank regression coefficients were computed to quantify the effect of each individual input parameter on output parameters. It was observed that the break discharge coefficient is the most important uncertain parameter relating to the prediction of all the primary side parameters and that the steam generator (SG) relief pressure setting is the most important parameter in predicting the SG secondary pressure.

A Study on Real-time simulation using Artificial Neural Network (신경회로망을 이용한 실시간 시뮬레이션에 관한 연구 (원자력 발전소 중대사고를 중심으로))

  • Roh, Chang-Hyun;Jung, Kwang-Ho
    • Journal of Korea Game Society
    • /
    • v.2 no.2
    • /
    • pp.46-51
    • /
    • 2002
  • In this study, a real-time simulation method for the phenomena, which are too complex to be simulated during real-time computer games, was proposed based on the neural network. The procedure of proposed method is to 1) obtain correlation data between input parameters and output parameters by mathematical modeling, code analyses, and so on, 2) train the neural network with the correlation data, 3) and insert the trained neural network in a game program as a simulation module. For the case that the number of the input and output parameters is too high to be analyzed, a method was proposed to omit parameters of little importance. The method was successfully applied to severe accidents of nuclear power plants, reflecting that the method was very effective in real time simulation of complex phenomena.

  • PDF

ON THE STUDY OF SOLUTION UNIQUENESS TO THE TASK OF DETERMINING UNKNOWN PARAMETERS OF MATHEMATICAL MODELS

  • Avdeenko, T.V.;Je, Hai-Gon
    • East Asian mathematical journal
    • /
    • v.16 no.2
    • /
    • pp.251-266
    • /
    • 2000
  • The problem of solution uniqueness to the task of determining unknown parameters of mathematical models from input-output observations is studied. This problem is known as structural identifiability problem. We offer a new approach for testing structural identifiability of linear state space models. The approach compares favorably with numerous methods proposed by other authors for two main reasons. First, it is formulated in obvious mathematical form. Secondly, the method does not involve unfeasible symbolic computations and thus allows to test identifiability of large-scale models. In case of non-identifiability, when there is a set of solutions to the task, we offer a method of computing functions of the unknown parameters which can be determined uniquely from input-output observations and later used as new parameters of the model. Such functions are called parametric functions capable of estimation. To develop the method of computation of these functions we use Lie group transformation theory. Illustrative example is given to demonstrate applicability of presented methods.

  • PDF

Input-Output Feedback Linearizing Control with Parameter Estimation Based On A Reduced Design Model

  • Non, Kap-Kyun;Dongil Shin;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.110-110
    • /
    • 2001
  • By the state transformation including independent outputs functions, a nonlinear process model can be decomposed into two subsystems; the one(design model) is described in output variables as new states and used for control system synthesis and the other(disturbance model) is described in the original unavailable states and its couplings with the design model are treated as uncertain time-varying parameters in the design model. Its existence with respect to the design model is ignored. So, the design model is and uncertain time-variant system. Control synthesis based on a reduced design model is a combined form of a time-variant input-output linearization with parameter estimation. The parameter estimation is also based on the design model and it gives the parameter estimates such that the estimated outputs follow the actual outputs in a specified way. The disturbances form disturbance model and as well all the other uncertainties affecting the outputs will be reflected into the estimated parameters used in the linearizing control law.

  • PDF

Half Load-Cycle Worked Dual Input Single Output DC/AC Inverter

  • Chen, Rong;Zhang, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1217-1223
    • /
    • 2014
  • A novel half load-cycle worked dual input single output (DISO) DC/AC inverter is presented. The basic circuit consists of a dual buck regulator, which works in continuous current mode. The working principle of DISO DC/AC inverter has been used. The control method applied for half load-cycle worked DISO DC/AC inverter has been studied. The control effects of the open-loop proportional control and closed-loop proportional-integral control are compared by using PSIM software. The parameters are adopted in the realistic simulation and experiment test. Moreover, the waveforms, such as voltage of modulation reference signal and output voltage, were given. The simulation and experiment results proved that the half load-cycle worked DISO DC/AC inverter could achieve good performance, gain a line frequency of 50 Hz, and verify the correctness of theoretical analysis.

Blind MMSE Equalization of FIR/IIR Channels Using Oversampling and Multichannel Linear Prediction

  • Chen, Fangjiong;Kwong, Sam;Kok, Chi-Wah
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.162-172
    • /
    • 2009
  • A linear-prediction-based blind equalization algorithm for single-input single-output (SISO) finite impulse response/infinite impulse response (FIR/IIR) channels is proposed. The new algorithm is based on second-order statistics, and it does not require channel order estimation. By oversampling the channel output, the SISO channel model is converted to a special single-input multiple-output (SIMO) model. Two forward linear predictors with consecutive prediction delays are applied to the subchannel outputs of the SIMO model. It is demonstrated that the partial parameters of the SIMO model can be estimated from the difference between the prediction errors when the length of the predictors is sufficiently large. The sufficient filter length for achieving the optimal prediction is also derived. Based on the estimated parameters, both batch and adaptive minimum-mean-square-error equalizers are developed. The performance of the proposed equalizers is evaluated by computer simulations and compared with existing algorithms.

  • PDF

A Method for Propagating Fuzzy Concepts through Fuzzy IF-THEN-ELSE Rules

  • Kim, Doohyun;Lim, Younghwan;Kim, Jin H.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.12 no.2
    • /
    • pp.21-35
    • /
    • 1987
  • This paper presents a method for propagating fuzzy concepts through fuzzy IF-THEN-ELSE rules. A fuzzy IF-THEN-ELSE rule consists of a set of fuzzy condition and conclusion pairs. These pairs assumed to contain informations about a fuzzy mapping from fuzzy concepts of condition parts to the fuzzy concepts of conclusion parts. Conventionally, vectors are used to define fuzzy concepts and matrices are used to define a fuzzy mapping between fuzzy conditions and conclusions. This approach, however, does not satisfy the existing condition property, i.e., when a fuzzy input data exactly matches to a fuzzy condition, fuzzy output data should be mapped to a corresponding fuzzy conclusion. Alternatively, we propose a parameterized approach in which every fuzzy concept is described by a parameterized standard function, including fuzzy conditions and fuzzy conclusions. A fuzzy IF-THEN-ELSE rule takes the parameterized fuzzy concept as an input, and produces a standard function with new parameters as an output. New parameters are determined by a parameterwise interpolation. That is, each output parameters are determined by interpolating parameters of the same class contained in fuzzy conclusions. Obviously, the proposed scheme always satisfies the existing condition property.

  • PDF

A New Algorithm for Predicting Process Variables on Welding Bead Geometry for Robotic Arc welding (로봇 아아크 용접에서 비드 형상에 공정변수들을 예측하기 위한 새로운 알고리즘)

  • 김일수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.36-41
    • /
    • 1997
  • With the trend towards welding automation and robozation, mathematical models for studying the influence of various parameters on the weld bead geometry in Gas Metal Arc(GMA) welding process are required. The results of bead on plate welds deposited using the GMA welding process has enabled mathematical relationships to be developed that model the weld bead geometry. Experimental results were compared to outputs obtained using existing formulae that correlate process input variables to output parameters and subsequent modelling was performed in order to better predict the output of the GMA welding process. The aim of this work was to explain the relationships between GMA welding variables and weld bead geometry and thus, be able to predict input weld bead size. The relationships can be usefully employed for open loop process control and also for adaptive control provided that dynamic sensing of process output is performed.

  • PDF

Determination on Optima Condition for a Gas Metal Arc Welding Process Using Genetic Algorithm (유전 알고리즘을 이용한 가스 메탈 아크 용접 공정의 최적 조건 설정에 관한 연구)

  • 김동철;이세헌
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.63-69
    • /
    • 2000
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables was wire feed rate, welding voltage, and welding speed and the output variables were bead height, bead width, and penetration. The number of level for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 40 experiments.

  • PDF

A V­Groove $CO_2$ Gas Metal Arc Welding Process with Root Face Height Using Genetic Algorithm

  • Ahn, S.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.15-23
    • /
    • 2003
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed, root opening and the output variables were bead height, bead width, penetration and back bead width. The number of level for each input variable is 8, 16, 8 and 3, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 3,072 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 48 experiments.

  • PDF