• Title/Summary/Keyword: Input and Output Parameters

Search Result 889, Processing Time 0.036 seconds

Design of the UHF Power Amp by Using the 3dB Coupler Tuner (3dB Coupler Tuner를 이용한 UHF Power Amp의 설계)

  • Byung Chul Kim
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.2
    • /
    • pp.16-21
    • /
    • 1993
  • A newly advanced method of characterizing large signal S-parameters of TR using the overall gain of normally operating TR is proposed based on the load pull method which gives the matching network only. Large signal S-parameters of TR are characterized from the circuit which consists of TR and 3dB Coupler Tuners at the input and output ports, and which is B class biased with 0dBminput signal. Amplifier can be designed to have 8.5dB gain at 770MHz using the calculated large signal S-parameters with the resulting gain of 8.786dB.

  • PDF

Energy-saving optimization on active disturbance rejection decoupling multivariable control

  • Da-Min Ding;Hai-Ma Yang;Jin Liu;Da-Wei Zhang;Xiao-Hui Jiang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.850-860
    • /
    • 2023
  • An industrial control process multiple-input multiple-output (MIMO) coupled system is analyzed in this study as an example of a Loss of Coolant Accident (LOCA) simulation system. Ordinary control algorithms can complete the steady state of the control system and even reduce the response time to some extent, but the entire system still consumes a large amount of energy after reaching the steady state. So a multivariable decoupled energy-saving control method is proposed, and a novel energy-saving function (economic function, Eco-Function) is specially designed based on the active disturbance rejection control algorithm. Simulations and LOCA simulation system tests show that the Eco-function algorithm can cope with the uncertainty of the multivariable system's internal parameters and external disturbances, and it can save up to 67% of energy consumption in maintaining the parameter steady state.

Simulation and Three-dimensional Animation of Skipjack Behavior as Capture Process during Purse Seining

  • Kim, Yong-Hae;Park, Myeong-Chul;Ha, Suk-Wun
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.113-123
    • /
    • 2008
  • We modeled fish school movements as a capture process in relation to the purse seine method using the three steps of the stimulus-response process (i.e., input stimuli, central decision-making and output reaction). Input stimuli of the model were categorized as either physical stimuli such as visual stimulus, sound stimulus, water flow, and weather or as biological stimuli such as species and size, swimming performance, sensual sensitivity, and presence of prey or predators. The output process determining the spatial orientation of the fish school for 3-D movements was based on swimming speed and angular change in the fish response, and these movements were animated as the relative geometry between the fish school and the purse seine. Simulations were carried out for skipjack tuna (Katsuwonus pelamis) schools reacting to a pelagic purse seine in the southwest Pacific Ocean. Simulation results showed that escape ratios varied from 20 to 70% by the relevant ranges in the stimulus-response thresholds, swimming speeds, and angular changes of fish schools were similar to those observed in the field. Therefore, with knowledge of relevant parameters, this model can be used to predict capture and escape probabilities of purse seine operations for different fish species or conditions.

Neural network simulator for semiconductor manufacturing : Case study - photolithography process overlay parameters (신경망을 이용한 반도체 공정 시뮬레이터 : 포토공정 오버레이 사례연구)

  • Park Sanghoon;Seo Sanghyok;Kim Jihyun;Kim Sung-Shick
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.4
    • /
    • pp.55-68
    • /
    • 2005
  • The advancement in semiconductor technology is leading toward smaller critical dimension designs and larger wafer manufactures. Due to such phenomena, semiconductor industry is in need of an accurate control of the process. Photolithography is one of the key processes where the pattern of each layer is formed. In this process, precise superposition of the current layer to the previous layer is critical. Therefore overlay parameters of the semiconductor photolithography process is targeted for this research. The complex relationship among the input parameters and the output metrologies is difficult to understand and harder yet to model. Because of the superiority in modeling multi-nonlinear relationships, neural networks is used for the simulator modeling. For training the neural networks, conjugate gradient method is employed. An experiment is performed to evaluate the performance among the proposed neural network simulator, stepwise regression model, and the currently practiced prediction model from the test site.

  • PDF

A Study on Parameters for Design of IGBT (IGBT 설계 Parameter 연구)

  • Lho, Young-Hwan;Lee, Sang-Yong;Kim, Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1943-1950
    • /
    • 2009
  • The development of high voltage Insulated Gate Bipolar Transistor (IGBT) have given new device advantage in the areas where they compete with conventional GTO (Gate Turnoff Thyristor) technology. The IGBT combines the advantages of a power MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) and a bipolar power transistor. The change of electrical characteristics for IGBT is mainly coming from the change of characteristics of MOSFET at the input gate and the PNP transistors at the output. The gate oxide structure gives the main influence on the changes in the electrical characteristics affected by environments such as radiation and temperature, etc.. The change of threshold voltage, which is one of the important design parameters, is brought by charge trapping at the gate oxide. In this paper, the electrical characteristics are simulated by SPICE simulation, and the parameters are found to design optimized circuits.

  • PDF

A three-dimensional two-hemisphere model for unmanned aerial vehicle multiple-input multiple-output channels

  • Zixu Su;Wei Chen;Changzhen Li;Junyi Yu;Guojiao Gong;Zixin Wang
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.768-780
    • /
    • 2023
  • The application of unmanned aerial vehicles (UAVs) has recently attracted considerable interest in various areas. A three-dimensional multiple-input multiple-output concentric two-hemisphere model is proposed to characterize the scattering environment around a vehicle in an urban UAV-to-vehicle communication scenario. Multipath components of the model consisted of lineof-sight and single-bounced components. This study focused on the key parameters that determine the scatterer distribution. A time-variant process was used to analyze the nonstationarity of the proposed model. Vital statistical properties, such as the space-time-frequency correlation function, Doppler power spectral density, level-crossing rate, average fade duration, and channel capacity, were derived and analyzed. The results indicated that with an increase in the maximum scatter radius, the time correlation and level-crossing rate decreased, the frequency correlation function had a faster downward trend, and average fade duration increased. In addition, with the increase of concentration parameter, the time correlation, space correlation, and level-crossing rate increased, average fade duration decreased, and Doppler power spectral density became flatter. The proposed model was compared with current geometry-based stochastic models (GBSMs) and showed good consistency. In addition, we verified the nonstationarity in the temporal and spatial domains of the proposed model. These conclusions can be used as references in the design of more reasonable communication systems.

Design of fuzzy logic controller using genetic algorithms for the flexible manipulator (Flexible manipulator를 위한 유전 알고리즘을 이용한 퍼지 제어기 설계)

  • 허남건;이기성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1808-1811
    • /
    • 1997
  • A position control algorithm for a flexible manipulato is stuudied. The proposed algorithm is based on a fuzzy theroy with a Steady State Genetic Algorithm(SSGA). The conventional fuzzy methods need expert's knowledges or human experiences. The SSGA, which is one of the optimization algorithms, tunes automatically the input-output membership parameters and fuzzy rules. The computer simulation is presented ot illustrate the approaches. Finally we applied a fuzzy theory with a SSGA to aposition control of a flexible manipulator.

  • PDF

A study on the parameter identification of conitnuous linear systems via sal-cal functions (SAL-CAL에 의한 연속 선형계에서의 파라메타 추정에 관한 연구)

  • 안두수;이해기;유상진;김민형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.821-824
    • /
    • 1990
  • This paper presents a method for Identification of a continuous time linear system parameters. We take the plant driven by percitently exciting input. To express the integral functions in terms of measured periodic output data. We use the Walsh function based on cal-sal functions. The linear algebraic equations for parameter identification is obtained. The present method Is simple and computationally advantageous.

  • PDF

Robust Stabilization Algorithms of Plants Subject to Structured Parameter Perturbations (내개 변수 섭동 구조를 갖는 플랜트의 강인 안정화 알고리즘)

  • 황유섭;이상혁
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.4
    • /
    • pp.316-325
    • /
    • 1989
  • This paper is concerned with robust stabilization of single input or single output systems. Based on the region of non-destabilizing perturbations some approaches to design which allow the given of structured perturbation of plant parameters and their gradient optimization are given. These algorithms iteratively enlarge the stability hypershere in plant parameter space and can be used to design a controller to stabilize a plant subject to given ranges of parameter excursions.

  • PDF

A Simultaneous Perturbation Stochastic Approximation (SPSA)-Based Model Approximation and its Application for Power System Stabilizers

  • Ko, Hee-Sang;Lee, Kwang-Y.;Kim, Ho-Chan
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.506-514
    • /
    • 2008
  • This paper presents an intelligent model; named as free model, approach for a closed-loop system identification using input and output data and its application to design a power system stabilizer (PSS). The free model concept is introduced as an alternative intelligent system technique to design a controller for such dynamic system, which is complex, difficult to know, or unknown, with input and output data only, and it does not require the detail knowledge of mathematical model for the system. In the free model, the data used has incremental forms using backward difference operators. The parameters of the free model can be obtained by simultaneous perturbation stochastic approximation (SPSA) method. A linear transformation is introduced to convert the free model into a linear model so that a conventional linear controller design method can be applied. In this paper, the feasibility of the proposed method is demonstrated in a one-machine infinite bus power system. The linear quadratic regulator (LQR) method is applied to the free model to design a PSS for the system, and compared with the conventional PSS. The proposed SPSA-based LQR controller is robust in different loading conditions and system failures such as the outage of a major transmission line or a three phase to ground fault which causes the change of the system structure.