• Title/Summary/Keyword: Input Vector

Search Result 1,091, Processing Time 0.028 seconds

A User Scheduling with Interference-Aware Power Control for Multi-Cell MIMO Networks (다중안테나 다중셀 네트워크에서 간섭인지 기반 전력제어 기술을 이용한 사용자 스케쥴링)

  • Cho, Moon-Je;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1063-1070
    • /
    • 2015
  • In this paper, we propose a distributed user scheduling with transmit power control based on the amount of generating interference to other base stations (BSs) in multi-cell multi-input multi-output (MIMO) networks. Assuming that the time-division duplexing (TDD) system is used, the interference channel from users to other cell BSs is obtained at each user. In the proposed scheduling, each user first generates a transmit beamforming vector by using singular value decompositon (SVD) over MIMO channels and reduces the transmit power if its generating interference to other BSs is larger than a predetermined threshold. Each BS selects the user with the largest effective channel gains among users, which reflects the adjusted power of users. Simulation results show that the proposed technique significantly outperforms the existing user scheduling algorithms.

A Weighted Block Adaptive Estimation for STBC Single-Carrier System in Frequency-Selective Time-Varying Channels (다중 경로 시변 채널 환경에서 시공간 블록 부호 단일 반송파 시스템을 위한 가중치 블록 적응형 채널 추정 알고리즘)

  • Baek, Jong-Seob;Kwon, Hyuk-Jae;Seo, Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.338-347
    • /
    • 2007
  • In this paper, a weighted block adaptive channel estimation (WBA-CE) for a space-time block-coded (STBC) single-carrier transmission with a cyclic-prefix is proposed. In operation of the WBA-CE, a STBC matrix-wise block for filter input symbols is first formulated. Applying a weighted a posteriori error vector-based least-square (LS) criterion for this block, the coefficient correction terms of the WBA-CE are then computed. An approximate steady-state excess mean-square error (EMSE) of the WBA-CE for the stationary optimal coefficient is also analyzed. Simulation results show in a time-varying typical urban (TU) channel that the proposed channel estimator provides better bit-error-rate (BER) performances than conventional algorithms such as the NLMS and RLS channel estimators.

A Safety Score Prediction Model in Urban Environment Using Convolutional Neural Network (컨볼루션 신경망을 이용한 도시 환경에서의 안전도 점수 예측 모델 연구)

  • Kang, Hyeon-Woo;Kang, Hang-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.8
    • /
    • pp.393-400
    • /
    • 2016
  • Recently, there have been various researches on efficient and automatic analysis on urban environment methods that utilize the computer vision and machine learning technology. Among many new analyses, urban safety analysis has received a major attention. In order to predict more accurately on safety score and reflect the human visual perception, it is necessary to consider the generic and local information that are most important to human perception. In this paper, we use Double-column Convolutional Neural network consisting of generic and local columns for the prediction of urban safety. The input of generic and local column used re-sized and random cropped images from original images, respectively. In addition, a new learning method is proposed to solve the problem of over-fitting in a particular column in the learning process. For the performance comparison of our Double-column Convolutional Neural Network, we compare two Support Vector Regression and three Convolutional Neural Network models using Root Mean Square Error and correlation analysis. Our experimental results demonstrate that our Double-column Convolutional Neural Network model show the best performance with Root Mean Square Error of 0.7432 and Pearson/Spearman correlation coefficient of 0.853/0.840.

Learning Networks for Learning the Pattern Vectors causing Classification Error (분류오차유발 패턴벡터 학습을 위한 학습네트워크)

  • Lee Yong-Gu;Choi Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.77-86
    • /
    • 2005
  • In this paper, we designed a learning algorithm of LVQ that extracts classification errors and learns ones and improves classification performance. The proposed LVQ learning algorithm is the learning Networks which is use SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of LVQ. To extract pattern vectors which cause classification errors, we proposed the error-cause condition, which uses that condition and constructed the pattern vector space which consists of the input pattern vectors that cause the classification errors and learned these pattern vectors , and improved performance of the pattern classification. To prove the performance of the proposed learning algorithm, the simulation is performed by using training vectors and test vectors that are Fisher' Iris data and EMG data, and classification performance of the proposed learning method is compared with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional classification.

  • PDF

Feature information fusion using multiple neural networks and target identification application of FLIR image (다중 신경회로망을 이용한 특징정보 융합과 적외선영상에서의 표적식별에의 응용)

  • 선선구;박현욱
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.4
    • /
    • pp.266-274
    • /
    • 2003
  • Distance Fourier descriptors of local target boundary and feature information fusion using multiple MLPs (Multilayer perceptrons) are proposed. They are used to identify nonoccluded and partially occluded targets in natural FLIR (forward-looking infrared) images. After segmenting a target, radial Fourier descriptors as global shape features are defined from the target boundary. A target boundary is partitioned into four local boundaries to extract local shape features. In a local boundary, a distance function is defined from boundary points and a line between two extreme points. Distance Fourier descriptors as local shape features are defined by using distance function. One global feature vector and four local feature vectors are used as input data for multiple MLPs to determine final identification result of the target. In the experiments, we show that the proposed method is superior to the traditional feature sets with respect to the identification performance.

Study on the Shortest Path by the energy function in Hopfield neworks (홉필드 네트웍에서 에너지 함수를 이용한 최적 경로 탐색에 관한 연구)

  • Ko, Young-Hoon;Kim, Yoon-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.215-221
    • /
    • 2010
  • Hopfield networks have been proposed as a new computational tool for finding the shortest path of networks. Zhang and Ali studied the method of finding shortest path by expended neurons of Hopfield networks. Ali Algorithm is well known as the tool with the neurons of branch numbers. Where a network grows bigger, it needs much more time to solve the problem by Ali algorithm. This paper modifies the method to find the synapse matrix and the input bias vector. And it includes the eSPN algorithm after proper iterations of the Hopfield network. The proposed method is a tow-stage method and it is more efficient to find the shortest path.The proposed method is verified by three sample networks. And it could be more applicable then Ali algorithm because it's fast and easy. When the cost of brach is changed, the proposed method works properly. Therefore dynamic cost-varing networks could be used by the proposed method.

On-line Signature Verification Using Fusion Model Based on Segment Matching and HMM (구간 분할 및 HMM 기반 융합 모델에 의한 온라인 서명 검증)

  • Yang Dong Hwa;Lee Dae-Jong;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.12-17
    • /
    • 2005
  • The segment matching method shows better performance than the global and points-based methods to compare reference signature with an input signature. However, the segment-to-segment matching method has the problem of decreasing recognition rate according to the variation of partitioning points. This paper proposes a fusion model based on the segment matching and HMM to construct a more reliable authentic system. First, a segment matching classifier is designed by conventional technique to calculate matching values lot dynamic information of signatures. And also, a novel HMM classifier is constructed by using the principal component analysis to calculate matching values for static information of signatures. Finally, SVM classifier is adopted to effectively combine two independent classifiers. From the various experiments, we find that the proposed method shows better performance than the conventional segment matching method.

Reliable Camera Pose Estimation from a Single Frame with Applications for Virtual Object Insertion (가상 객체 합성을 위한 단일 프레임에서의 안정된 카메라 자세 추정)

  • Park, Jong-Seung;Lee, Bum-Jong
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.499-506
    • /
    • 2006
  • This Paper describes a fast and stable camera pose estimation method for real-time augmented reality systems. From the feature tracking results of a marker on a single frame, we estimate the camera rotation matrix and the translation vector. For the camera pose estimation, we use the shape factorization method based on the scaled orthographic Projection model. In the scaled orthographic factorization method, all feature points of an object are assumed roughly at the same distance from the camera, which means the selected reference point and the object shape affect the accuracy of the estimation. This paper proposes a flexible and stable selection method for the reference point. Based on the proposed method, we implemented a video augmentation system that inserts virtual 3D objects into the input video frames. Experimental results showed that the proposed camera pose estimation method is fast and robust relative to the previous methods and it is applicable to various augmented reality applications.

A New Intermediate View Reconstruction using Adaptive Disparity Estimation Scheme (적응적 변이추정 기법을 이용한 새로운 중간시점영상합성)

  • 배경훈;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.610-617
    • /
    • 2002
  • In this paper, a new intermediate view reconstruction technique by using a disparity estimation method based-on the adaptive matching window size is proposed. In the proposed method, once the feature values are extracted from the input stereo image, then the matching window size for the intermediate view reconstruction is adaptively selected in accordance with the magnitude of this feature values. That is, coarse matching is performed in the region having smaller feature values while accurate matching is carried out in the region having larger feature values by comparing with the predetermined threshold value. Accordingly, this new approach is not only able to reduce the mismatching probability of the disparity vector mostly happened in the accurate disparity estimation with a small matching window size, but is also able to reduce the blocking effect occurred in the disparity estimation with a large matching window size. Some experimental results on the 'Parts' and 'Piano' images show that the proposed method improves the PSNR about 2.32∼4.16dB and reduces the execution time to about 39.34∼65.58% than those of the conventional matching methods.

A New Function Embedding Method for the Multiple-Controlled Unitary Gate based on Literal Switch (리터럴 스위치에 의한 다중제어 유니터리 게이트의 새로운 함수 임베딩 방법)

  • Park, Dong-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.101-108
    • /
    • 2017
  • As the quantum gate matrix is a $r^{n+1}{\times}r^{n+1}$ dimension when the radix is r, the number of control state vectors is n, and the number of target state vectors is one, the matrix dimension with increasing n is exponentially increasing. If the number of control state vectors is $2^n$, then the number of $2^n-1$ unit matrix operations preserves the output from the input, and only one can be performed the unitary operation to the target state vector. Therefore, this paper proposes a new method of function embedding that can replace $2^n-1$ times of unit matrix operations with deterministic contribution to matrix dimension by arithmetic power switch of the unitary gate. The proposed function embedding method uses a binary literal switch with a multivalued threshold, so that a general purpose hybrid MCU gate can be realized in a $r{\times}r$ unitary matrix.