• 제목/요약/키워드: Input Vector

검색결과 1,090건 처리시간 0.029초

트리구조의 비균일한 대역폭을 갖는 Delayless 서브밴드 필터 구조 (Nonuniform Delayless Subband Filter Structure with Tree-Structured Filter Bank)

  • 최창권;조병모
    • 한국음향학회지
    • /
    • 제20권1호
    • /
    • pp.13-20
    • /
    • 2001
  • 음향 에코우제거기나 소음제어와 같은 임펄스 응답이 긴 디지털 필터를 이용하여 필터링을 할 경우 수렴속도가 느리고 계산시간이 많이 걸린다. 이러한 기존의 필터링에서 생기는 계산시간이나 수렴속도 문제를 개선하기 위해서 서브밴드 필터링과 멀티레이트 신호처리 기술이 개발되었다. 모든 시스템의 전달함수는 interpolator와 임펄스 응답사이에 임의 수만큼의 0이 들어있는 sparse 임펄스 응답을 갖는 서브필터를 직렬로 연결한 구조로 표현할 수 있다. 이 경우에 interpolator는 Hadamard 행렬로 표현되고 저역통과필터 특성을 갖는 원형필터를 균일하게 이동시킨 것과 같다. 그래서 입력신호를 Hadamard 변환을 이용하여 각 서브대역으로 분할하고 decimation을 하여 샘플링 레이트를 줄이는 멀티레이트기술이 음향 함수 모델링이나 잡음제거에 응용할 수 있다. 본 논문에서는 decimation으로 생기는 에리어싱을 제거하고 수렴속도를 향상시키기 위해서 입력 신호를 트리구조를 갖는 필터뱅크를 이용하여 비균일한 서브대역으로 분할, 그리고 decimation을 하여 샘플링레이트를 변환하고 각 서브대역에서 계수를 갱신한 후 이 계수를 전대역으로 Hadamard 변환을 이용하여 변환하는 비균일한 대역폭을 갖는 delayless 필터 구조를 제안하고 이 구조를 컴퓨터 시뮬레이션을 통하여 성능을 검증한다.

  • PDF

FCM 알고리즘과 퍼지 소속도를 이용한 지능형 자가 진단 시스템 (An Intelligent Self Health Diagnosis System using FCM Algorithm and Fuzzy Membership Degree)

  • 김광백;김주성
    • 지능정보연구
    • /
    • 제13권1호
    • /
    • pp.81-90
    • /
    • 2007
  • 본 논문에서는 전문적인 지식이 부족한 일반인들을 대상으로 자신의 건강 상태를 파악 할 수 있는 지능형 자가 진단 시스템을 제안한다. 제안된 자가 진단 시스템은 보건 복지부에 제출된 '한국인이 부담을 가지는 질병' 관련보고서를 참조하여 선정한 30가지의 질병과 각 질병에 대한 대표 증상을 이용하여 질병을 도출한다. 본 논문에서는 개선된 FCM 알고리즘을 적용하여 질병 종류를 군집화하고 각 질병의 증상과 관련된 질의 결과를 입력 벡터로 적용하여 사용자의 건강 상태를 진단한다. 기존의 방법에서는 입력 벡터와 군집 중심과의 거리를 측정한 후 거리가 가까운 5가지를 선택하기 때문에 선택된 질의와 관련 없는 질병을 도출하는 단점이 있었다. 이러한 단점을 개선하기 위해, 선택된 질의와 도출된 질병에 대한 퍼지 소속도를 이용하여 정렬한다. 정렬된 질병에서 상위 5가지를 도출한 결과, 선택된 질의와 관련된 질병만을 도출하는 것을 확인 할 수 있었다.

  • PDF

VLBI TRF Combination Using GNSS Software

  • Kwak, Younghee;Cho, Jungho
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권4호
    • /
    • pp.315-320
    • /
    • 2013
  • Space geodetic techniques can be used to obtain precise shape and rotation information of the Earth. To achieve this, the representative combination solution of each space geodetic technique has to be produced, and then those solutions need to be combined. In this study, the representative combination solution of very long baseline interferometry (VLBI), which is one of the space geodetic techniques, was produced, and the variations in the position coordinate of each station during 7 years were analyzed. Products from five analysis centers of the International VLBI Service for Geodesy and Astrometry (IVS) were used as the input data, and Bernese 5.0, which is the global navigation satellite system (GNSS) data processing software, was used. The analysis of the coordinate time series for the 43 VLBI stations indicated that the latitude component error was about 15.6 mm, the longitude component error was about 37.7 mm, and the height component error was about 30.9 mm, with respect to the reference frame, International Terrestrial Reference Frame 2008 (ITRF2008). The velocity vector of the 42 stations excluding the YEBES station showed a magnitude difference of 7.3 mm/yr (30.2%) and a direction difference of $13.8^{\circ}$ (3.8%), with respect to ITRF2008. Among these, the 10 stations in Europe showed a magnitude difference of 7.8 mm/yr (30.3%) and a direction difference of $3.7^{\circ}$ (1.0%), while the 14 stations in North America showed a magnitude difference of 2.7 mm/yr (15.8%) and a direction difference of $10.3^{\circ}$ (2.9%).

비선형 증폭기의 위상 오차 보정을 위한 적응형 보상 시스템 (An Adaptive Phase Error Correction System for Nonlinear Amplifiers)

  • 한상민;임종식;손태호;윤원상;표성민;김영식
    • 한국산학기술학회논문지
    • /
    • 제10권9호
    • /
    • pp.2261-2266
    • /
    • 2009
  • 본 논문에서는 비선형 증폭기의 위상 오차의 보정 방법을 채용한 시스템을 제안하였다. 간단한 위상 벡터의 적응형 응답 방식을 이용하여, 다양한 입력 전력 변화에 대해 매우 큰 폭의 AM/PM 왜곡 감소 효과를 얻을 수 있었다. 제안된 방법은 다양한 위상 오차 변화 환경에 대해 본 보정 시스템을 채용하지 않았을 경우와 비교하여, AM/PM 왜곡을 최대 80 %까지 감소시킬 수 있는 것으로 평가되었다. 또한 추가적으로 입력 신호에 대한 포락선 보상 기법을 추가하여 출력 신호의 인접채널 전력 비율의 향상시킨 결과를 보였다.

효과적인 패턴 인식을 위한 개선된 Counterpropagation 알고리즘 (An Enhanced Counterpropagation Algorithm for Effective Pattern Recognition)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제12권9호
    • /
    • pp.1682-1688
    • /
    • 2008
  • CP(Counterpropagation) 알고리즘은 Kohonen의 경쟁 네트워크와 Grossberg의 아웃스타(Outstar) 구조의 결합으로 이루어진 것으로 패턴 매칭, 패턴 분류, 통계적인 분석 및 데이터 압축 등 활용분야가 다양하고, 다른 신경망 모델에 비해 학습이 매우 빠르다는 장점이 있다. 그러나 CP 알고리즘은 충분한 경쟁층의 수가 설정되지 않아 경쟁층에서 학습이 불안정하고, 다양한 패턴으로 구성된 경우에는 패턴들을 정확히 분류할 수 없는 경우가 발생한다. 그리고 CP 알고리즘은 출력층에서 연결 강도를 조정할 때, 학습률에 따라 학습 및 인식 성능이 좌우된다. 본 논문에서는 효과적인 패턴인식을 위해 다수 경쟁층을 설정하고, 입력 벡터와 승자 뉴런의 대표 벡터간의 차이와 승자 뉴런의 빈도수를 학습률 조정에 반영하고 학습률을 동적으로 조정하여 경쟁층에서 안정적으로 학습되도록 하고, 출력층의 연결강도를 조정할 때 모멘텀(Momentum) 방법을 적용한다. 제안된 CP 학습 성능을 확인하기 위해서 실제 여권에서 추출된 개별 코드를 대상으로 실험한 결과, 개선된 CP 알고리즘이 기존의 CP 알고리즘보다 학습 성능, 분류의 정확성 및 인식 성능이 개선된 것을 확인하였다.

사각형 마커 검출 및 인식 시스템 개발 (Development of a Detection and Recognition System for Rectangular Marker)

  • 강선경;이상설;정성태
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.97-107
    • /
    • 2006
  • 본 논문에서는 카메라 영상으로부터 사각형 형태의 마커를 검출하고 인식하는 방법을 제안한다. 본 논문에서는 사각형 형태의 마커 검출을 위하여 입력 영상을 이진 영상으로 변환하고 객체들의 윤곽선을 추출한 다음에 윤곽선을 선분으로 근사화 한다. 근사화된 선분으로부터 기하학적 특징을 이용하여 사각형을 찾는다. 마커의 사각형 영역을 찾은 다음에는 워핑 기법을 이용하여 사각형 마커 영상을 정사각형 형태로 정규화한다. 마커 영상을 정규화한 다음에는 주성분 분석을 통하여 마커 영상으로부터 특징 벡터를 추출하고 표준 마커에 대한 특징 벡터와의 최소 거리법에 의해 마커의 종류를 인식한다 인식 실험 결과 마커의 종류가 50개일 때에 최대 98%의 인식률을 얻을 수 있었고 입력 영상에 11개의 마커가 있는 경우에 초당 11.1 프레임의 수행 속도를 얻을 수 있었다.

  • PDF

A study on the Extraction of Similar Information using Knowledge Base Embedding for Battlefield Awareness

  • Kim, Sang-Min;Jin, So-Yeon;Lee, Woo-Sin
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권11호
    • /
    • pp.33-40
    • /
    • 2021
  • 고도화된 무기체계와 복잡한 전략으로 인하여 지휘관이 분석하고 판단해야 할 정보의 복잡도가 증가하고 있다. 지휘관의 적시적 판단을 위해서 전장의 정보를 지식화하고 분석할 수 있는 지능형 서비스가 필요하다. 지능형 서비스는 전장상황 정보로부터 지식을 추출하는 단계와 지식베이스를 구축하는 단계, 지식베이스로부터 전장상황을 분석하는 단계로 구성된다. 본 논문은 두 번째 단계에서 구축 완료된 지식베이스를 임베딩함으로써 입력 쿼리와 유사한 정보를 추출하는 방안을 연구한다. 지식베이스 임베딩을 위해 문장화 과정이 필요하며 random-walk 알고리즘을 적용한다. 문장화된 정보는 Word2Vec을 활용하여 벡터화되고 코사인 유사도를 통해 입력 쿼리와 유사한 정보를 찾는다. 본 논문에서는 오픈 지식베이스로부터 98개 개체를 기준으로 980개의 문장을 생성하고 100차원의 벡터로 임베딩함으로써 코사인 유사도 기반 유사 개체가 추출됨을 확인했다.

관상동맥질환 위험인자 유무 판단을 위한 심박변이도 매개변수 기반 심층 신경망의 성능 평가 (Performance Evaluation of Deep Neural Network (DNN) Based on HRV Parameters for Judgment of Risk Factors for Coronary Artery Disease)

  • 박성준;최승연;김영모
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권2호
    • /
    • pp.62-67
    • /
    • 2019
  • The purpose of this study was to evaluate the performance of deep neural network model in order to determine whether there is a risk factor for coronary artery disease based on the cardiac variation parameter. The study used unidentifiable 297 data to evaluate the performance of the model. Input data consists of heart rate parameters, which are SDNN (standard deviation of the N-N intervals), PSI (physical stress index), TP (total power), VLF (very low frequency), LF (low frequency), HF (high frequency), RMSSD (root mean square of successive difference) APEN (approximate entropy) and SRD (successive R-R interval difference), the age group and sex. Output data are divided into normal and patient groups, and the patient group consists of those diagnosed with diabetes, high blood pressure, and hyperlipidemia among the various risk factors that can cause coronary artery disease. Based on this, a binary classification model was applied using Deep Neural Network of deep learning techniques to classify normal and patient groups efficiently. To evaluate the effectiveness of the model used in this study, Kernel SVM (support vector machine), one of the classification models in machine learning, was compared and evaluated using same data. The results showed that the accuracy of the proposed deep neural network was train set 91.79% and test set 85.56% and the specificity was 87.04% and the sensitivity was 83.33% from the point of diagnosis. These results suggest that deep learning is more efficient when classifying these medical data because the train set accuracy in the deep neural network was 7.73% higher than the comparative model Kernel SVM.

한국 전통문화 말뭉치구축 및 Bi-LSTM-CNN-CRF를 활용한 전통문화 개체명 인식 모델 개발 (Constructing for Korean Traditional culture Corpus and Development of Named Entity Recognition Model using Bi-LSTM-CNN-CRFs)

  • 김경민;김규경;조재춘;임희석
    • 한국융합학회논문지
    • /
    • 제9권12호
    • /
    • pp.47-52
    • /
    • 2018
  • 개체명 인식(Named Entity Recognition)시스템은 문서로부터 고유한 의미를 가질 수 있는 인명(PS), 지명(LC), 기관명(OG) 등의 개체명을 추출하고 추출된 개체명의 범주를 결정하는 시스템이다. 최근 딥러닝 방식을 이용한 개체명 인식 연구에서 입력 데이터의 앞, 뒤 방향을 고려한 LSTM 기반의 Bi-LSTM 모델로부터 출력 데이터 간의 전이 확률을 이용한 CRF를 결합한 방식의 Bi-LSTM-CRF가 우수한 성능을 보이고, 문자 및 단어 단위의 효율적인 임베딩 벡터생성에 관한 연구와 CNN, LSTM을 활용한 모델에서도 좋은 성능을 보여주고 있다. 본 연구에서는 한국어 개체명 인식시스템 성능 향상을 위해 자질을 보강한 Bi-LSTM-CNN-CRF 모델에 관해 기술하고 전통문화 말뭉치구축 방식에 대해 제안한다. 그리고 구축한 말뭉치를 한국어 개체명 인식 성능 향상을 위한 자질 보강 모델 Bi-LSTM-CNN-CRF로 학습한 결과에 대해 제안한다.

적응적 상관도를 이용한 주성분 변수 선정에 관한 연구 (A Study on Selecting Principle Component Variables Using Adaptive Correlation)

  • 고명숙
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권3호
    • /
    • pp.79-84
    • /
    • 2021
  • 고차원의 데이터를 처리하기 위해서는 데이터의 성질을 유지하면서 특징을 잘 반영할 수 있는 특징 추출 방법이 필요하다. 주성분분석 방법은 고차원 데이터에 포함된 정보를 저차원의 데이터로 변환하여 원래 데이터의 변수 수보다 적은 수의 변수로 고차원 데이터를 표현 할 수 있는 방법으로서 데이터의 특징 추출을 위한 대표적인 방법이다. 본 연구에서는 데이터가 고차원인 경우 데이터 특징 추출을 위한 주성분 분석에 있어서 주성분 변수 선정 시 적응적 상관도를 기반으로 한 주성분 분석 방법을 제안한다. 제안하는 방법은 입력 데이터간의 상관 관계를 기반으로 상관도를 적응적으로 반영하여 데이터의 주성분을 분석함으로써 다른 여러 변수에 중복적으로 상관도가 높은 변수와 주성분을 유도하는데 연관성이 적은 변수를 주성분 변수 후보 대상에서 제외시키고자 한다. 고유벡터 계수 값에 의한 주성분 위계를 분석하고 위계가 낮은 주성분이 변수로 선정이 되는 것을 막고 또한 상관 분석을 통하여 데이터의 중복 발생이 데이터 편향을 유도하는 것을 최소화하 하고자 한다. 이를 통하여 주성분 변수 선정 시 데이터 편향성의 영향을 줄임으로써 실제 데이터의 특징을 잘 나타내는 주성분 변수를 선정하는 방법을 제안하고자 한다.