• 제목/요약/키워드: Input Variable Selection

검색결과 67건 처리시간 0.028초

HMR 상품의 선택속성이 1인 가구의 소비자 구매의도에 미치는 영향 - 소비자 온라인 리뷰의 조절효과 중심으로 - (The Effect of Selection Attribute of HMR Product on the Consumer Purchasing Intention of an Single Household - Centered on the Regulation Effect of Consumer Online Reviews -)

  • 김희연
    • 한국조리학회지
    • /
    • 제22권8호
    • /
    • pp.109-121
    • /
    • 2016
  • This study analyzed the effect of five sub-variables' attribute of HMR: features of information, diversity, promptness, price and convenience, on the consumer purchasing intention. In addition, the regulation effect of positive reviews and negative reviews of consumers' online reviews between HMR selection attribute and purchasing intention was also tested. Results are following. First, convenience feature (B=.577, p<.001) and diversity feature (B=.093, p<.01) among the effect of HMR selection attribute had a positive (+) effect on purchasing intention. On the other hand, promptness feature (B=.235, p<.001) and price feature (B=.161, p<.001), and information feature (B=.288, p<.001) were not significant effect on purchasing intention. Second, result of regulation effect of the positive reviews of consumer's online review between the selection attribute of the HMR product and consumers' purchasing intention, in the first-stage model in which the selection attribute of the HMR product is input as an independent variable, there was a significant positive (+) effect on all the features of convenience, diversity, promptness, price, and information. In addition, there was significant positive (+) main effect (B=.472, p<.001) in the second step model in which the consumers' positive reviews, that is a regulation variable. Furthermore, the feature of price (B=.068, p<.05) had a significant positive (+) effect in the third stage in which the selection attribute of the HMR product that is an independent variable and the interaction of the positive review. However, the feature of information (B=-.063, p<.05) showed negative (-) effect, and there was no effect on the features of convenience, diversity, and promptness. Third, as a result of testing the regulation effect of the negative reviews of consumers' online reviews between HMR product selection attribute and consumers' purchasing intention, in the first-stage model in which the selection attribute of the HMR product was a positive (+) effect on all the features of convenience, diversity, promptness, price, and information. In the second-stage model in which consumers' negative reviews (B=-.113, p<.001) had negative (-) effect. In the third-stage in which the selection attribute of the HMR product and the interactions of the negative reviews was a positive (+) effect with the feature of price (B=.113, p<.01). Last, there was no effect at all on the features of convenience, promptness, and information.

랜덤 포리스트를 이용한 비제어 급성 출혈성 쇼크의 흰쥐에서의 생존 예측 (A Survival Prediction Model of Rats in Uncontrolled Acute Hemorrhagic Shock Using the Random Forest Classifier)

  • 최준열;김성권;구정모;김덕원
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권3호
    • /
    • pp.148-154
    • /
    • 2012
  • Hemorrhagic shock is a primary cause of deaths resulting from injury in the world. Although many studies have tried to diagnose accurately hemorrhagic shock in the early stage, such attempts were not successful due to compensatory mechanisms of humans. The objective of this study was to construct a survival prediction model of rats in acute hemorrhagic shock using a random forest (RF) model. Heart rate (HR), mean arterial pressure (MAP), respiration rate (RR), lactate concentration (LC), and peripheral perfusion (PP) measured in rats were used as input variables for the RF model and its performance was compared with that of a logistic regression (LR) model. Before constructing the models, we performed 5-fold cross validation for RF variable selection, and forward stepwise variable selection for the LR model to examine which variables were important for the models. For the LR model, sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (ROC-AUC) were 0.83, 0.95, 0.88, and 0.96, respectively. For the RF models, sensitivity, specificity, accuracy, and AUC were 0.97, 0.95, 0.96, and 0.99, respectively. In conclusion, the RF model was superior to the LR model for survival prediction in the rat model.

PCA를 활용한 기업실적 예측변수 생성 (Generating Firm's Performance Indicators by Applying PCA)

  • 이준혁;김갑조;박상성;장동식
    • 한국지능시스템학회논문지
    • /
    • 제25권2호
    • /
    • pp.191-196
    • /
    • 2015
  • 최근 기업의 실적 및 주가를 예측하기 위해 매출액증가율, 부채비율 등의 다양한 예측변수를 활용하여 정량적인 예측방법을 활용하는 연구가 많이 이루어지고 있다. 기업실적 및 주가를 정량적 예측하기 위해 수많은 예측변수들 중에서 모델구축을 위해 중요한 예측변수를 선정하는 것이 중요하다. 대부분의 기존연구들에서는 다양한 알고리즘을 활용하여 예측변수들을 제거하는 방법을 사용하는 경우가 많았다. 이러한 경우 각 예측변수들이 가지는 많은 정보들이 제거되는 문제점이 존재한다. 이러한 문제점을 해결하기 위해 본 연구에서는 예측모델 구축을 위해 예측변수들을 제거하는 대신 각 변수들이 가지고 있는 정보를 병합하여 새로운 변수를 생성하는 대표적인 차원축소 방법인 주성분분석(PCA)을 활용하였다. 본 연구에서는 제안된 예측모델을 미국의 전자, 전기기업의 재무정보를 활용하여 구축하고 예측성능을 실증적으로 분석해 보았다.

성공적인 ERP 시스템 구축 예측을 위한 사례기반추론 응용 : ERP 시스템을 구현한 중소기업을 중심으로 (An Application of Case-Based Reasoning in Forecasting a Successful Implementation of Enterprise Resource Planning Systems : Focus on Small and Medium sized Enterprises Implementing ERP)

  • 임세헌
    • Journal of Information Technology Applications and Management
    • /
    • 제13권1호
    • /
    • pp.77-94
    • /
    • 2006
  • Case-based Reasoning (CBR) is widely used in business and industry prediction. It is suitable to solve complex and unstructured business problems. Recently, the prediction accuracy of CBR has been enhanced by not only various machine learning algorithms such as genetic algorithms, relative weighting of Artificial Neural Network (ANN) input variable but also data mining technique such as feature selection, feature weighting, feature transformation, and instance selection As a result, CBR is even more widely used today in business area. In this study, we investigated the usefulness of the CBR method in forecasting success in implementing ERP systems. We used a CBR method based on the feature weighting technique to compare the performance of three different models : MDA (Multiple Discriminant Analysis), GECBR (GEneral CBR), FWCBR (CBR with Feature Weighting supported by Analytic Hierarchy Process). The study suggests that the FWCBR approach is a promising method for forecasting of successful ERP implementation in Small and Medium sized Enterprises.

  • PDF

가변 운율 모델링을 이용한 고음질 감정 음성합성기 구현에 관한 연구 (A Study on Implementation of Emotional Speech Synthesis System using Variable Prosody Model)

  • 민소연;나덕수
    • 한국산학기술학회논문지
    • /
    • 제14권8호
    • /
    • pp.3992-3998
    • /
    • 2013
  • 본 논문은 고음질의 대용량 코퍼스 기반 음성 합성기에 감정 음성 코퍼스를 추가하여 보다 다양한 합성음을 생성할 수 있는 방법에 관한 것이다. 파형 접합형 합성기에서 사용할 수 있는 형태로 감정 음성 코퍼스를 구축하여 기존의 일반 음성 코퍼스와 동일한 합성단위 선택과정을 통해 합성음을 생성할 수 있도록 구현하였다. 감정 음성 합성을 위해 태그를 사용하여 텍스트를 입력하고, 억양구 단위로 일치하는 데이터가 존재하는 경우 감정 음성으로 합성하고, 그렇지 않은 경우 일반 음성으로 합성하도록 하였다. 그리고 음성에서 운율을 구성하는 요소로 휴지기(break)가 있는데, 감정 음성의 휴지기는 일반 음성보다 불규칙한 특성이 있다. 따라서 합성기에서 생성되는 휴지기 정보를 감정 음성 합성에 그대로 사용하는 것이 어려워진다. 이 문제를 해결하기 위해 가변 휴지기(Variable break)[3] 모델링을 적용하였다. 실험은 일본어 합성기를 사용하였고, 그 결과 일반 음성의 휴지기 예측 모듈을 그대로 사용하면서 자연스러운 감정 합성음을 얻을 수 있었다.

더미변수(Dummy Variable)를 포함하는 다변수 시계열 모델을 이용한 단기부하예측 (Short-Term Load Forecasting Using Multiple Time-Series Model Including Dummy Variables)

  • 이경훈;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권8호
    • /
    • pp.450-456
    • /
    • 2003
  • This paper proposes a multiple time-series model with dummy variables for one-hour ahead load forecasting. We used 11 dummy variables that were classified by day characteristics such as day of the week, holiday, and special holiday. Also, model specification and selection of input variables including dummy variables were made by test statistics such as AIC(Akaike Information Criterion) and t-test statistics of each coefficient. OLS (Ordinary Least Squares) method was used for estimation and forecasting. We found out that model specifications for each hour are not identical usually at 30% of optimal significance level, and dummy variables reduce the forecasting error if they are classified properly. The proposed model has much more accurate estimates in forecasting with less MAPE (Mean Absolute Percentage Error).

Homogenized limit analysis of masonry structures with random input properties: polynomial Response Surface approximation and Monte Carlo simulations

  • Milani, G.;Benasciutti, D.
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.417-447
    • /
    • 2010
  • The uncertainty often observed in experimental strengths of masonry constituents makes critical the selection of the appropriate inputs in finite element analysis of complex masonry buildings, as well as requires modelling the building ultimate load as a random variable. On the other hand, the utilization of expensive Monte Carlo simulations to estimate collapse load probability distributions may become computationally impractical when a single analysis of a complex building requires hours of computer calculations. To reduce the computational cost of Monte Carlo simulations, direct computer calculations can be replaced with inexpensive Response Surface (RS) models. This work investigates the use of RS models in Monte Carlo analysis of complex masonry buildings with random input parameters. The accuracy of the estimated RS models, as well as the good estimations of the collapse load cumulative distributions obtained via polynomial RS models, show how the proposed approach could be a useful tool in problems of technical interest.

연속형 퍼지 입력변수를 사용하는 퍼지 제어기의 환산계수 동조 (Scale Factor Tuning of the Fuzzy Controller Using Continuous Fuzzy Input Variables)

  • 임영철;박종건;위석오;정현철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1359-1361
    • /
    • 1996
  • This paper describes a design of real time fuzzy controller using Minimum fuzzy control Rule Selection Method(MRSM). The control algorithm of dynamic systems needs less computation time and memory. To reduce the computation time of fuzzy logic controller, minimum number of rules are to be selected for the fuzzy input variable. The universe of discourse is divided by the number of linguistic labels to allocate the assigned membership function to the fuzzy input variables. In this case, since fuzzy input variables are continuous, scale factor SU is tuned independently. According to increment of SU control surface is improved to adapt the change of system parameter. At this, crisp control surface is increased. With the increament of crisp control surface, fuzzy control surface is reduced. When error state deviates from desirable error state, crisp control surface is more useful than fuzzy control surface for obtaining fast rising time.

  • PDF

사다리꼴형 함수의 입력 공간분할에 의한 가스로공정의 특성분석 (Characteristics of Gas Furnace Process by Means of Partition of Input Spaces in Trapezoid-type Function)

  • 이동윤
    • 디지털융복합연구
    • /
    • 제12권4호
    • /
    • pp.277-283
    • /
    • 2014
  • 퍼지모델링은 일반적으로 주어진 데이터를 이용하고 퍼지규칙은 입력변수를 선정하고 각 입력변수에 대한 입력공간을 분할함으로써 입력변수 및 공간분할에 의해 확립된다. 퍼지규칙의 전반부는 입력변수, 공간분할 수 및 소속 함수를 선정하고 본 논문에서 후반부는 선형추론 및 변형된 이차식에 의해 다항식함수의 형태로 나타낸다. 전반부 파라미터의 동정은 입출력 데이터의 최소값과 최대값을 이용하는 최소-최대 방법 및 입출력 데이터를 군집으로 형성하는 C-Means 클러스터링 알고리즘을 사용하여 입력공간을 분할한다. 각 규칙의 후반부 파라미터들, 즉 다항식의 계수들의 동정은 표준최소자승법에 의해 수행된다. 본 논문에서 전반부 소속 함수는 사다리꼴형 멤버쉽 함수를 사용하여 입력공간을 분할하고 비선형공정에서 널리 이용되는 가스로데이터를 사용하여 성능을 평가한다.