• Title/Summary/Keyword: Input Parameters

Search Result 3,486, Processing Time 0.05 seconds

Development of Qual2E Interface System Coupled with HyGIS (HyGIS와 Qual2E의 연계 시스템 개발)

  • Park, In-Hyeok;Kim, Kyung-Tak;Ha, Seong-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.96-108
    • /
    • 2011
  • Going abreast of high public concerns on the environment, the need of environmental modeling has been increased to assess the impact of space exploitation of environment. GIS offers potential solutions to the many problems encountered during water-quality modeling. But there are also many problems associated with the modeling. The preparation of necessary parameters for the modeling can be complicated. Also, the results from one model can be different from each other even the same area is analyzed. This paper aims to develop the data processing system to couple the Qual2E and HyGIS in which Qual2E input and output data files can be created, modified and processed using HyGIS and assess the performance of the system. A structural analysis and standardization of modeling are conducted to identify data flow and processing of Qual2E. Algorithms of the defined processors are designed and developed as component modules. The data model of HyGIS-Qual2E is designed, and GUI(Graphical User Interface) is developed using Visual Basic 6.0 and GDK.

Double-pass Second Harmonics Generation of Tunable CW Infrared Laser Beam of DOFA System in Periodically Poled LiNbO3 (PPLN 비선형 결정과 이중통과법을 이용한 DOFA 시스템에서 증폭된 연속발진형 파장가변 적외선 레이저광의 제 2고조파 발생)

  • Yoo, Kil-Sang;Jo, Jae-Heung;Ko, Kwang-Hoon;Lim, Gwon;Jeong, Do-Young
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.229-236
    • /
    • 2008
  • The optimum conditions of second harmonic generation (SHG) can be successfully achieved experimentally using single pass and double pass methods of a pumping beam. The beam has a power of several Watts radiated by a DOFA (Diode Laser Oscillator & Fiber Amplifier) system, which is a high power CW wavelength tunable infrared laser system, in a PPLN (Periodically Poled MgO doped Lithium Niobate) nonlinear crystal. In the case of a single pass method, the parameters are the wavelength of 535 nm for SHG and the output power of 245 mW generated from the pumping input beam with wavelength of 1070 nm and the power of 2.45 W at phase matching temperature of $108.9^{\circ}C$. The conversion efficiency of SHG was 10%. In order to enhance the output of SHG, the double pass method of the SHG system of a PPLN using a concave mirror for the retroreflection and a pair of wedged flat windows for phase compensation was also presented. In this double pass system, we obtained the SHG output beam with the wavelength of 535 nm and the maximum power of 383 mW at optimum phase matching temperature of $108.5^{\circ}C$ by using an incident pumping beam with wavelength of 1070 nm and the power of 2.45 W. The maximum conversion efficiency is 15.6%, which is more than that of the single pass method.

On the Effective Shear Rigidity in Ship Vibration Analysis (선체진동해석(船體振動解析)에 있어서의 유효전단강성도(有效剪斷剛性度))

  • K.C.,Kim;S.H.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.45-53
    • /
    • 1985
  • For the analysis of vertical vibrations of a ship's hull, the Timoshenko beam analogy is accepted up to seven or eight-node modes provided that the system parameters are properly calculated. As to the shear coefficient, it has been a common practice to apply the strain energy method or the projected area method. The theoretical objection to the former is that it ignores lateral contraction due to Poisson's ratio, and the latter is of extreme simplifications. Recently, Cowper's and Stephen's shear coefficient formulas have drawn ship vibration analysts' attentions because these formulas, derivation of which are based on an integrations of the equations of three-dimensional elasticity, take Poisson's ratio into account. Providing computer programs for calculation of the shear coefficient of ship sections modeled as thin-walked multicell sections by each of the forementioned methods, the authors calculated natural vibration characteristics of a bulk carrier and of a container ship by the transfer matrix method using shear coefficients obtained by each of the methods, and discussed the results in comparision. The major conclusions resulted from this investigation are as follows: (1) The shear coefficients taking account of the effects of Poisson's ratio, Cowper's $K_c$ and Stephen's $K_s$, result in higher values of about 10% in maximum as compared with the shear coefficient $K_o$ based on the conventional strain energy methods; (a) $K_c/K_o{\cong}1.05\;and\;K_s/K_o{\cong}1.10$ for ships having single skin side-shell such as a bulk carrier. (b) $K_c/K_o{\cong}1.02\;and\;K_s/K_o{\cong}1.05$ for ships having longitudinally through bulkheads and/or double side-shells in the portion of the cargo hod such as a container carrier. (2) The distributions of the effective shear area along the ship's hull based on each of $K_o,\;K_c\;and\;K_s$ are similar each another except the both end portions. (3) Natural frequencies and mode shapes of the hull based on each of $K_c\;and\;K_s$ are of small differences as compared each other. (4) In cases of using $K_c\;or\;K_s$ in ship vibration analysis, it is also desirable to have the bending rigidity be corrected according to the effective breadth concept. And then, natural frequencies and mode shapes calculated with the bending rigidity corrected in the above and with each of $K_o,\;K_c\;and\;K_s$ result in small differences as compared each another. (5) Referring to those mentioned in the above (3) and (4) and to the full-scale experimental results reported by Asmussen et al.[17], and considering laboursome to prepare the computer input data, the following suggestions can safely be made; (a) Use of $K_o$ in ship vibration analysis is appropriate in practical senses. (b) Use of $K_c$ is appropriate even for detailed vibration analysis of a ship's hull. (6) The effective shear area based on the projected area method is acceptable for the two-node mode.

  • PDF

Time-Scale Modification of Polyphonic Audio Signals Using Sinusoidal Modeling (정현파 모델링을 이용한 폴리포닉 오디오 신호의 시간축 변화)

  • 장호근;박주성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2001
  • This paper proposes a method of time-scale modification of polyphonic audio signals based on a sinusoidal model. The signals are modeled with sinusoidal component and noise component. A multiresolution filter bank is designed which splits the input signal into six octave-spaced subbands without aliasing and sinusoidal modeling is applied to each subband signal. To alleviate smearing of transients in time-scale modification a dynamic segmentation method is applied to subbands which determines the analysis-synthesis frame size adaptively to fit time-frequency characteristics of the subband signal. For extracting sinusoidal components and calculating their parameters matching pursuit algorithm is applied to each analysis frame of subband signal. In accordance with spectrum analysis a psychoacoustic model implementing the effect of frequency masking is incorporated with matching pursuit to provide a resonable stop condition of iteration and reduce the number of sinusoids. The noise component obtained by subtracting the synthesized signal with sinusoidal components from the original signal is modeled by line-segment model of short time spectrum envelope. For various polyphonic audio signals the result of simulation shows suggested sinusoidal modeling can synthesize original signal without loss of perceptual quality and do more robust and high quality time-scale modification for large scale factor because of representing transients without any perceptual loss.

  • PDF

FFC2Q Model for NPS Load Analysis according to Characteristics of Early Stage of Runoff (강우 초기특성에 따른 비점오염부하량 산정을 위한 FFC2Q 모형)

  • Lee, Jong-Tae;Seo, Kyung-A;Hur, Sung-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.3
    • /
    • pp.245-256
    • /
    • 2010
  • We study the basic theory and applicability of the WQUAL block in the FFC2Q model and the characteristics of non-point pollutant loads during the early stage of runoff. Study is also performed on selection of the values of the related parameters and their effect on the simulation results. FFC2Q simulation results are compared for verification with the measured data for three rainfall events in the Gunja Subbasin and found to be similar to the measured data in peak-flows, total runoff volumes, total loads, peak concentrations and times of peak concentration. This model thus shows results very close to those applying the SWMM and MOUSE models, even though it uses simplified input data. Related to rainfall distribution, under the condition of Huff 1st quartile distribution the pollutant loads occurred earlier than under other conditions, and in the early stage of rainfall the BOD and COD loads increased faster than the SS loads. The NPS loads were concentrated in the early stage of rainfall and finally reached total loads, so the rainfall after that could not contribute so much to the NPS loads.

Comparison of Groundwater Recharge between HELP Model and SWAT Model (HELP 모형과 SWAT 모형의 지하수 함양량 비교)

  • Lee, Do-Hun;Kim, Nam-Won;Chung, Il-Moon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.383-391
    • /
    • 2010
  • The groundwater recharge was assessed by using both SWAT and HELP models in Bocheong-cheon watershed. The SWAT model is a comprehensive surface and subsurface model, but it lacks the physical basis for simulating a soil water percolation process. The HELP model which has a drawback in simulating subsurface lateral flow and groundwater flow component can simulate soil water percolation process by considering the unsaturated flow effect of soil layers. The SWAT model has been successfully applied for estimating groundwater recharge in a number of watersheds in Korea, while the application of HELP model has been very limited. The subsurface lateral flow parameter was proposed in order to consider the subsurface lateral flow effect in HELP model and the groundwater recharge was simulated by the modified exponential decay weighting function in HELP model. The simulation results indicate that the recharge of HELP model significantly depends on the values of lateral flow parameter. The recharge errors between SWAT and HELP are the smallest when the lateral flow parameter is about 0.6 and the recharge rates between two models are shown to be reasonably comparable for daily, monthly, and yearly time scales. The HELP model is useful for estimating groundwater recharge at watershed scale because the model structure and input parameters of HELP model are simpler than that of SWAT model. The accuracy of assessing the groundwater recharge might be improved by the concurrent application of SWAT model and HELP model.

Flood Forecasting and Warning Using Neuro-Fuzzy Inference Technique (Neuro-Fuzzy 추론기법을 이용한 홍수 예.경보)

  • Yi, Jae-Eung;Choi, Chang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.341-351
    • /
    • 2008
  • Since the damage from the torrential rain increases recently due to climate change and global warming, the significance of flood forecasting and warning becomes important in medium and small streams as well as large river. Through the preprocess and main processes for estimating runoff, diverse errors occur and are accumulated, so that the outcome contains the errors in the existing flood forecasting and warning method. And estimating the parameters needed for runoff models requires a lot of data and the processes contain various uncertainty. In order to overcome the difficulties of the existing flood forecasting and warning system and the uncertainty problem, ANFIS(Adaptive Neuro-Fuzzy Inference System) technique has been presented in this study. ANFIS, a data driven model using the fuzzy inference theory with neural network, can forecast stream level only by using the precipitation and stream level data in catchment without using a lot of physical data that are necessary in existing physical model. Time series data for precipitation and stream level are used as input, and stream levels for t+1, t+2, and t+3 are forecasted with this model. The applicability and the appropriateness of the model is examined by actual rainfall and stream level data from 2003 to 2005 in the Tancheon catchment area. The results of applying ANFIS to the Tancheon catchment area for the actual data show that the stream level can be simulated without large error.

Application of the weather radar-based quantitative precipitation estimations for flood runoff simulation in a dam watershed (기상레이더 강수량 추정 값의 댐 유역 홍수 유출모의 적용)

  • Cho, Yonghyun;Woo, Sumin;Noh, Joonwoo;Lee, Eulrae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.155-166
    • /
    • 2020
  • In this study, we applied the Radar-AWS Rainrates (RAR), weather radar-based quantitative precipitation estimations (QPEs), to the Yongdam study watershed in order to perform the flood runoff simulation and calculate the inflow of the dam during flood events using hydrologic model. Since the Yongdam study watershed is a representative area of the mountainous terrain in South Korea and has a relatively large number of monitoring stations (water level/flow) and data compared to other dam watershed, an accurate analysis of the time and space variability of radar rainfall in the mountainous dam watershed can be examined in the flood modeling. HEC-HMS, which is a relatively simple model for adopting spatially distributed rainfall, was applied to the hydrological simulations using HEC-GeoHMS and ModClark method with a total of eight independent flood events that occurred during the last five years (2014 to 2018). In addition, two NCL and Python script programs are developed to process the radar-based precipitation data for the use of hydrological modeling. The results demonstrate that the RAR QPEs shows rather underestimate trends in larger values for validation against gauged observations (R2 0.86), but is an adequate input to apply flood runoff simulation efficiently for a dam watershed, showing relatively good model performance (ENS 0.86, R2 0.87, and PBIAS 7.49%) with less requirements for the calibration of transform and routing parameters than the spatially averaged model simulations in HEC-HMS.

Design of Optimized pRBFNNs-based Face Recognition Algorithm Using Two-dimensional Image and ASM Algorithm (최적 pRBFNNs 패턴분류기 기반 2차원 영상과 ASM 알고리즘을 이용한 얼굴인식 알고리즘 설계)

  • Oh, Sung-Kwun;Ma, Chang-Min;Yoo, Sung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.749-754
    • /
    • 2011
  • In this study, we propose the design of optimized pRBFNNs-based face recognition system using two-dimensional Image and ASM algorithm. usually the existing 2 dimensional face recognition methods have the effects of the scale change of the image, position variation or the backgrounds of an image. In this paper, the face region information obtained from the detected face region is used for the compensation of these defects. In this paper, we use a CCD camera to obtain a picture frame directly. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. AdaBoost algorithm is used for the detection of face image between face and non-face image area. We can butt up personal profile by extracting the both face contour and shape using ASM(Active Shape Model) and then reduce dimension of image data using PCA. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of RBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to real-time face image database and then demonstrated from viewpoint of the output performance and recognition rate.

FFT/IFFT IP Generator for OFDM Modems (OFDM 모뎀용 FFT/IFFT IP 자동 생성기)

  • Lee Jin-Woo;Shin Kyung-Wook;Kim Jong-Whan;Baek Young-Seok;Eo Ik-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.368-376
    • /
    • 2006
  • This paper describes a Fcore_GenSim(Parameterized FFT Core Generation & Simulation Program), which can be used as an essential If(Intellectual Property) in various OFDM modem designs. The Fcore_Gensim is composed of two parts, a parameterized core generator(PFFT_CoreGen) that generates Verilog-HDL models of FFT cores, and a fixed-point FFT simulator(FXP_FFTSim) which can be used to estimate the SQNR performance of the generated cores. The parameters that can be specified for core generation are FFT length in the range of 64 ~2048-point and word-lengths of input/output/internal/twiddle data in the range of 8-b "24-b with 2-b step. Total 43,659 FFT cores can be generated by Fcore_Gensim. In addition, CBFP(Convergent Block Floating Point) scaling can be optionally specified. To achieve an optimized hardware and SQNR performance of the generated core, a hybrid structure of R2SDF and R2SDC stages and a hybrid algorithm of radix-2, radix-2/4, radix-2/4/8 are adopted according to FFT length and CBFP scaling.