• Title/Summary/Keyword: Input Out Model

Search Result 779, Processing Time 0.029 seconds

Production of Topographic-Cadastral Map Using Digital Topographic Map (수치지형도를 활용한 지형.지번도 제작방안)

  • 최윤수;이석용
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.3
    • /
    • pp.241-250
    • /
    • 2000
  • The Government confirmed the action planning of digital mapping project for major thematic maps based on‘Revised Plan for The Development of the National Geographic Information System’(NGIS). Mapping for major thematic maps will selectively have produced the essential digital thematic maps according to the frequency of usage by the year of 2000. The models of topographic-cadastral maps around Suwon were produced in accordance with the presented draft. We presented specification for production of the most appropriate topographic-cadastral maps through the analysis of the process of production, discussion and error check, and correction of the produced topographic-cadastral maps. And we could make it easier to develop digital mapping project of topographic-cadastral maps effectively by presenting the strategy for data input and maintenance, the cost model for carrying out the digital thematic map production, digital topographic maps, and the supplement of data model and data format.

  • PDF

Numerical Analyses about Test Results of Discharge Capacity Apparatus Using Penetration Method (관입식 통수능 실험의 수치해석)

  • Yoo, Nam-Jae;Woo, Young-Min;Jun, Sang-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.720-728
    • /
    • 2009
  • This thesis is results of numerical analyses about test results of discharge capacity apparatus using penetration method. Applicability of numerical approach with FEM technique, using Cam-clay model, was confirmed by analyzing the results of standard consolidation test before analyzing test results of discharge capacity apparatus using penetration method. Thus, input parameters for the model was convinced to be appropriate. For numerical analyses about test results of discharge capacity apparatus using penetration method, identical initial and loading conditions during tests were applied to simulate test results correctly. Effects of ground disturbance resulted from installment of vertical drains on the behaviors of consolidation were also simulated. Applicability of numerical approach was investigated by comparing test results with numerical ones. As results of them, both of consolidation settlement were found to be in good agreements so that its applicability was confirmed. As results of numerical estimation, degree of consolidation with the condition of considering smear zone was found to be delayed, compared with results without smear zone. On the other hands, parametric numerical analyses of changing parameters related to smear zone such as permeability and size of smear zone and permeability of vertical drain were also carried out.

  • PDF

Water Quality Modeling for Intake Station by 2-dimensional Advection-Dispersion Model (2차원 이송-확산 모형을 이용한 취수장 유입 수질 예측)

  • Kim, Jae-Dong;Kim, Ji-Hoon;Kim, Young-Do;Song, Chang-Geun;Seo, Il-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.667-679
    • /
    • 2011
  • In this study, the influences of pollutant from Dae-po Stream and So-gam Stream located at the downstream of Nak-dong River on the water quality at Mul-geum water intake station were analyzed using RAMS model. Field measurements of velocity by ADCP, and water quality distribution of BOD and TP by water sampling were carried out to present the input and verification data for numerical simulations. The comparison between RAM2 and ADCP measurement, which aimed for the analysis of 2-D velocity distribution around Mul-geum water intake station showed that two results matched well along the spanwise direction. The prediction of pollutant concentration by RAM4 agreed fairly well with the measured data except for the points nearby right banks in the vicinity of tributary pollutant source. Flushing effect by the increase of mainstream discharge in Nak-dong River was analyzed to provide the damage mitigation in preparation for the accidental water pollution. With increasing mainstream discharge, high velocity and increased water quantity induced increasing dilution effect, thereby decreasing the inflow pollutant concentration rapidly.

Simultaneous identification of moving loads and structural damage by adjoint variable

  • Abbasnia, Reza;Mirzaee, Akbar;Shayanfar, Mohsenali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.871-897
    • /
    • 2015
  • This paper presents a novel method based on sensitivity of structural response for identifying both the system parameters and input excitation force of a bridge. This method, referred to as "Adjoint Variable Method", is a sensitivity-based finite element model updating method. The computational cost of sensitivity analyses is the main concern associated with damage detection by these methods. The main advantage of proposed method is inclusion of an analytical method to augment the accuracy and speed of the solution. The reliable performance of the method to precisely indentify the location and intensity of all types of predetermined single, multiple and random damages over the whole domain of moving vehicle speed is shown. A comparison study is also carried out to demonstrate the relative effectiveness and upgraded performance of the proposed method in comparison to the similar ordinary sensitivity analysis methods. Moreover, various sources of error including the effects of noise and primary errors on the numerical stability of the proposed method are discussed.

Runoff simulation for operation of small urban storm water pumping station under heavy storm rainfall conditions (집중호우 시 도시 소유역 배수펌프장 운영을 위한 강우유출모의)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Sung-Geun;Lee, Chang-No;Kim, Goo-Hyeon
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2006
  • In this study, runoff simulation was carried out in order to derive operational improvement of small urban storm water pumping station under heavy storm rainfall conditions. The flood inflow hydrograph of Guri city heavy storm in July, 2001 was successfully simulated by HEC-HMS, a GIS-based runoff simulation model. For the runoff simulation, ArcView, as an effective GIS tool, was used to provide input data of the model such as land use data, soil distribution data and SCS runoff curve number.

  • PDF

Shallow landslide susceptibility mapping using TRIGRS

  • Viet, Tran The;Lee, Giha;An, Hyun Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.214-214
    • /
    • 2015
  • Rainfall induced landslides is one of the most devastating natural disasters acting on mountainous areas. In Korea, landslide damage areas increase significantly from 1990s to 2000s due to the increase of both rainfall intensity and rainy days in addition with haphazard land development. This study was carried out based on the application of TRIGRS unsaturated (Transient Rainfall Infiltration and Grid-based Regional Slope stability analysis), a Fortran coded, physically based, and numerical model that can predict landslides for areas where are prone to shallow precipitation. Using TRIGRS combining with the geographic information system (GIS) framework, the landslide incident happened on 27th, July 2011 in Mt. Umyeon in Seoul was modeled. The predicted results which were raster maps showed values of the factors of safety on every pixel at different time steps show a strong agreement with to the observed actual landslide scars in both time and locations. Although some limitations of the program are still needed to be further improved, some soil data as well as landslide information are lack; TRIGRS is proved to be a powerful tool for shallow landslide susceptibility zonation especially in great areas where the input geotechnical and hydraulic data for simulation is not fully available.

  • PDF

A Joint Allocation Algorithm of Computing and Communication Resources Based on Reinforcement Learning in MEC System

  • Liu, Qinghua;Li, Qingping
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.721-736
    • /
    • 2021
  • For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.

The Chinese Black Box - A Scientific Model of Traditional Chinese Medicine

  • Theodorou, Matthias;Fleckenstein, Johannes
    • Journal of Acupuncture Research
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Models of traditional Chinese medicine (TCM) are still difficult to grasp from the view of a Western-cultural background. For proper integration into science and clinical research, it is vital to think "out of the box" of classical sciences. Modern sciences, such as quantum physics, system theory, and information theory offer new models, that reveal TCM as a method to process information. For this purpose, we apply concepts of information theory to propose a "Chinese black box model," that allows for a non-deterministic, bottom-up approach. Considering a patient as an undeterminable complex system, the process of getting information about an individual in Chinese diagnostics is compared to the input-process-output principle of information theory and quantum physics, which is further illustrated by Wheeler's "surprise 20 questions." In TCM, an observer uses a decision-making algorithm to qualify diagnostic information by the binary polarities of "yang" (latin activity) and "yin" (latin structivity) according to the so called "8 principles" (latin 8 guiding criteria). A systematic reconstruction of ancient Chinese terms and concepts illuminates a scattered scientific method, which is specified in a medical context by Latin terminology of the sinologist Porkert [definitions of the Latin terms are presented in Porkert's appendix [1] (cf. Limitations)].

Flow and Heat Transfer Analysis of Cooling Water in a Rotating Magnetron Cathode (회전형 마그네트론 음극의 냉각수 유동 및 열전달 해석)

  • Joo, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.171-179
    • /
    • 2019
  • We have developed a numerical model to analyze flow dynamics and heat transfer characteristics of the cooling water in a circular rotating magnetron cathode by a moving boundary grid method realized in a commercial multiphysics package, CFD-ACE+. The numerical model is composed of a target, dual mass rotating cathode and cooling water connections. When the inlet and outlet of the cooling water are offset by the same distance from the rotation axis, the temperature at the center is higher by $50^{\circ}C$ at maximum. At 5 mm away from the target surface, the temperature profile showed typical center high characteristic. At heat input of 30 kW, the maximum temperature change of the cooling water hits $6^{\circ}C$ within 0.5 sec under 60 rpm. With a cooling water configuration of center in/edge out, the temperature of the center region of the target gets lowered. Within 100 seconds of plasma operation time, the cooling water temperature keeps getting higher.

Construction of Abalone Sensory Texture Evaluation System Based on BP Neural Network

  • Li, Xiaochen;Zhao, Yuyang;Li, Renjie;Zhang, Ning;Tao, Xueheng;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.7
    • /
    • pp.790-803
    • /
    • 2019
  • The effects of different heat treatments on the sensory characteristics of abalones are studied in this study. In this paper, the sensory evaluation of abalone samples under different heat treatment conditions is carried out, and the evaluation results are analyzed. The three-dimensional (3D) scanning and reverse engineering are used in tooth modeling of the sensory evaluation of abalone samples under different heat treatment conditions. Besides, the chewing movement models are simplified into three modes, including the cutting mode, compressing mode and grinding mode, which are simulated using finite element simulation. The elastic modulus of the abalone samples is obtained through the compression testing using a texture analyzer to distinguish their material properties under different heat treatments and to obtain simulated mechanical parameters. Finally, taking the mechanical parameters of the finite element simulation of abalone chewing as input and sensory evaluation parameters as the output, BP neural network is established in which the sensory texture evaluation model of abalone samples is obtained. Through verification, the neural network prediction model can meet the requirements of food texture evaluation, with an average error of 9.12%.