• Title/Summary/Keyword: Input Out Model

Search Result 777, Processing Time 0.03 seconds

Development and Comparative Study on Tire Models In the AutoDyn7 Program

  • Han, Dong-Hoon;Sohn, Jeong-Hyun;Kim, Kwang-Suk;Lee, Jong-Nyun;Yoo, Wan-Suk;Lee, Byun-Hoon;Choi, Jae-Weon
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.730-736
    • /
    • 2000
  • In this paper, several tire models (Magic formula, Carpet plot, VA tire, DADS tire and STI tire) are implemented and compared. Since the STI (System Technology Inc.) tire model in the AutoDyn7 program is in a good agreement to NADSdyna STI tire model and experiment, it is selected as a reference tire model for the comparison. To compare tire models, input parameters of each tire model are extracted from the STI tire model to preserve the same tire properties. Several simulations are carried out to compare performances of tire models, i. e., bump simulation, lane change simulation, and pulse steering simulation. The performances in vehicle maneuverability are also compared with the four parameter evaluation method.

  • PDF

Application of black box model for height prediction of the fractured zone in coal mining

  • Zhang, Shichuan;Li, Yangyang;Xu, Cuicui
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.997-1010
    • /
    • 2017
  • The black box model is a relatively new option for nonlinear dynamic system identification. It can be used for prediction problems just based on analyzing the input and output data without considering the changes of the internal structure. In this paper, a black box model was presented to solve unconstrained overlying strata movement problems in coal mine production. Based on the black box theory, the overlying strata regional system was viewed as a "black box", and the black box model on overburden strata movement was established. Then, the rock mechanical properties and the mining thickness and mined-out section area were selected as the subject and object respectively, and the influences of coal mining on the overburden regional system were discussed. Finally, a corrected method for height prediction of the fractured zone was obtained. According to actual mine geological conditions, the measured geological data were introduced into the black box model of overlying strata movement for height calculation, and the fractured zone height was determined as 40.36 m, which was comparable to the actual height value (43.91 m) of the fractured zone detected by Double-block Leak Hunting in Drill. By comparing the calculation result and actual surface subsidence value, it can be concluded that the proposed model is adaptable for height prediction of the fractured zone.

Large strain nonlinear model of lead rubber bearings for beyond design basis earthquakes

  • Eem, Seunghyun;Hahm, Daegi
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.600-606
    • /
    • 2019
  • Studies on the application of the lead rubber bearing (LRB) isolation system to nuclear power plants are being carried out as one of the measures to improve seismic performance. Nuclear power plants with isolation systems require seismic probabilistic safety assessments, for which the seismic fragility of the structures, systems, and components needs be calculated, including for beyond design basis earthquakes. To this end, seismic response analyses are required, where it can be seen that the behaviors of the isolation system components govern the overall seismic response of an isolated plant. The numerical model of the LRB used in these seismic response analyses plays an important role, but in most cases, the extreme performance of the LRB has not been well studied. The current work therefore develops an extreme nonlinear numerical model that can express the seismic response of the LRB for beyond design basis earthquakes. A full-scale LRB was fabricated and dynamically tested with various input conditions, and test results confirmed that the developed numerical model better represents the behavior of the LRB over previous models. Subsequent seismic response analyses of isolated nuclear power plants using the model developed here are expected to provide more accurate results for seismic probabilistic safety assessments.

Detecting Jaywalking Using the YOLOv5 Model

  • Kim, Hyun-Tae;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.300-306
    • /
    • 2022
  • Currently, Korea is building traffic infrastructure using Intelligent Transport Systems (ITS), but the pedestrian traffic accident rate is very high. The purpose of this paper is to prevent the risk of traffic accidents by jaywalking pedestrians. The development of this study aims to detect pedestrians who trespass using the public data set provided by the Artificial Intelligence Hub (AIHub). The data set uses training data: 673,150 pieces and validation data: 131,385 pieces, and the types include snow, rain, fog, etc., and there is a total of 7 types including passenger cars, small buses, large buses, trucks, large trailers, motorcycles, and pedestrians. has a class format of Learning is carried out using YOLOv5 as an implementation model, and as an object detection and edge detection method of an input image, a canny edge model is applied to classify and visualize human objects within the detected road boundary range. In this study, it was designed and implemented to detect pedestrians using the deep learning-based YOLOv5 model. As the final result, the mAP 0.5 showed a real-time detection rate of 61% and 114.9 fps at 338 epochs using the YOLOv5 model.

Backward motion control of a mobile robot with n passive trailers

  • Park, Myoung-Kuk;Chung, Woo-Jin;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1190-1195
    • /
    • 2003
  • In this paper, it is shown how a robot with n passive trailers can be controlled in backward direction. When driving backward direction, a kinematic model of the system is represented highly nonlinear equations. The problem is formulated as a trajectory following problem, rather than control of independent generalized coordinates. Also, the state and input saturation problems are formulated as a trajectory generation problem. The trajectory is traced by a rear hinge point of the last trailer, and reference trajectories include line segments, circular shapes and rectangular turns. Experimental verifications were carried out with the PSR-2(public service robot $2^{nd}$ version) with three passive trailers. Experimental result showed that the backward motion control can be successfully carried out using the proposed control scheme.

  • PDF

A Study on the Effects of Dynamic Vibration Absorber for Driveline with Propeller Shaft Supported by Center Bearing (센터 베어링으로 지지된 추진축을 갖는 구동계에서의 진동흡진기의 영향에 대한 연구)

  • 강영춘;임재환;정호일;이규령;이창노;임홍재
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.925-930
    • /
    • 2004
  • This paper is to study vibration effects of the dynamic vibration absorber. Multi-body dynamic analysis is carried out for the vehicle driveline model using ADAMS with flexible propeller shaft attached with the vibration damper. Primary bending mode frequency of the propeller shaft is obtained from the simulation and coincides with the experimental result. Various design parameters are studied in dynamic simulation operated by the engine torque input. This paper identifies the responses of dynamic vibration absorbers in the driveline with propeller shaft, which will be used to find out optimal design parameters.

  • PDF

A Study on Hadamard Transform Imaging Spectrometers utilizing Grill Spectrometers (그릴 스펙트로미터를 적용한 하다마드 트랜스폼 이미징 스펙트로미터에 대한 연구)

  • Park, Yeong-Jae;Park, Jin-Bae;Choi, Yoon-Ho;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.601-603
    • /
    • 1998
  • In this paper, Hadamard transform imaging spectrometers utilizing Grill spectrometers are proposed. General Hadamard Transform Spectrometers (HTS) carry out one-encoding through input masks, but Grill spectrometers carry out double-encoding through entrance and exit masks. Thus Grill spectrometers increase the signal-to-noise ratio by double-encoding. we reconfigure the system by using the Grill spectrometers which use a left cyclic S-matrix instead of the conventional right cyclic one. Then, we model the system and apply the mask characteristics method, i.e. $T^{I}$ method, to complete fast algorithm. Through computer simulations, we want to prove the superiority of the proposed system by comparing with the conventional HTS. From Observations concerning the average mean square error(AMSE) associated with estimates from the $T^{I}$ spectrum-recovery method, the relative performances of the two systems are compared.

  • PDF

Artificial Neural Network and Application in Temperature Control System

  • Sugisaka, Masanori;Liu, Zhijun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.260-264
    • /
    • 1998
  • In this paper, we implemented the neuro-computer called MY-NEUPOWER in our research to carry out the artificial neural networks (ANN) calculating. An application software was developed based on a neural network using back-propagation (BP) algorithm under the UNIX platform by the specified computer language named MYPARAL. This neural network model was used as an auxiliary controller in the temperature control of sinter cooler system in steel plant which is a nonlinear system. The neural controller was trained off-line using the real input-output data as training pairs. We also made the system description of adaptive neural controller on the same temperature control system. We will carry out the whole system simulation to verify the suitability of neural controller in improving the system features.

  • PDF

Dynamic Analysis of a KAERI Channel Type Shear Wall: System Identification, FE Model Updating and Time-History Responses (KAERI 채널형 전단벽체의 동적해석; 시스템판별, FE 모델향상 및 시간이력 응답)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.145-152
    • /
    • 2021
  • KAERI has planned to carry out a series of dynamic tests using a shaking table and time-history analyses for a channel-type concrete shear wall to investigate its seismic performance because of the recently frequent occurrence of earthquakes in the south-eastern parts of Korea. The overall size of a test specimen is b×l×h =2500 mm×3500 mm×4500 mm, and it consists of three stories having slabs and walls with thicknesses of 140 mm and 150 mm, respectively. The system identification, FE model updating, and time-history analysis results for a test shear wall are presented herein. By applying the advanced system identification, so-called pLSCF, the improved modal parameters are extracted in the lower modes. Using three FE in-house packages, such as FEMtools, Ruaumoko, and VecTor4, the eigenanalyses are made for an initial FE model, resulting in consistency in eigenvalues. However, they exhibit relatively stiffer behavior, as much as 30 to 50% compared with those extracted from the test in the 1st and 2nd modes. The FE model updating is carried out to consider the 6-dofs spring stiffnesses at the wall base as major parameters by adopting a Bayesian type automatic updating algorithm to minimize the residuals in modal parameters. The updating results indicate that the highest sensitivity is apparent in the vertical translational springs at few locations ranging from 300 to 500% in variation. However, their changes seem to have no physical meaning because of the numerical values. Finally, using the updated FE model, the time-history responses are predicted by Ruaumoko at each floor where accelerometers are located. The accelerograms between test and analysis show an acceptable match in terms of maximum and minimum values. However, the magnitudes and patterns of floor response spectra seem somewhat different because of the slightly different input accelerograms and damping ratios involved.

A Study on the Effect of the Biodegradability of the Composting Bulking Agent in the Swine Manure-Composting (충진재의 생분해도가 돈분 퇴비화 효율에 미치는 영향에 관한 연구)

  • 김성균;최경호;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.35-43
    • /
    • 1997
  • A study on the effect of the biodegradability of the composting bulking agent in the swine manurecomposting was carried out in a batch system. The purpose of this study is to prove the effect of the biodegradability of the composting-bulking agent on the efficiency of the composting. In this study, it is the lignins: Klason-Lignin in the volatile solid that the index of the biodegradability of the composting-material mixes which are pig manure-rice straw pig manure-sawdusts pig manuremixture of rice and ricestraw (2:1) pig manure-mixture of rice and sawdust (1:1). It was carried out in the same condition (moisture contents, air supply rate, C/N ratio, initial input weight, porosity-structure) except the biodegradability of the raw material mixes. One of the results from this study is that the biodegradability of the bulking agent in the sense of the VS lignin content is not an insignificant factor in composting reaction. The less contents of the lignin in VS, the more efficiencies of the cornposting reaction in use of these parameters for the degree of the reaction: temperature, the trends of the ash contents, the change pattern of the C/N ratio. Under some assumptions, it is able to induce rough model on the relation of the VS lignin contents with the efficiency of the degradability. In this model, the biodegradability of the bulking agent is not an insignificant factor however, it is flexible within some degrees of range.

  • PDF