• Title/Summary/Keyword: Input Normalization

Search Result 106, Processing Time 0.021 seconds

Analysis of normalization effect for earthquake events classification (지진 이벤트 분류를 위한 정규화 기법 분석)

  • Zhang, Shou;Ku, Bonhwa;Ko, Hansoek
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.2
    • /
    • pp.130-138
    • /
    • 2021
  • This paper presents an effective structure by applying various normalization to Convolutional Neural Networks (CNN) for seismic event classification. Normalization techniques can not only improve the learning speed of neural networks, but also show robustness to noise. In this paper, we analyze the effect of input data normalization and hidden layer normalization on the deep learning model for seismic event classification. In addition an effective model is derived through various experiments according to the structure of the applied hidden layer. As a result of various experiments, the model that applied input data normalization and weight normalization to the first hidden layer showed the most stable performance improvement.

Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands

  • Takewaki, I.;Tsujimoto, H.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.171-187
    • /
    • 2011
  • Rational scaling of design earthquake ground motions for tall buildings is essential for safer, risk-based design of tall buildings. This paper provides the structural designers with an insight for more rational scaling based on drift and input energy demands. Since a resonant sinusoidal motion can be an approximate critical excitation to elastic and inelastic structures under the constraint of acceleration or velocity power, a resonant sinusoidal motion with variable period and duration is used as an input wave of the near-field and far-field ground motions. This enables one to understand clearly the relation of the intensity normalization index of ground motion (maximum acceleration, maximum velocity, acceleration power, velocity power) with the response performance (peak interstory drift, total input energy). It is proved that, when the maximum ground velocity is adopted as the normalization index, the maximum interstory drift exhibits a stable property irrespective of the number of stories. It is further shown that, when the velocity power is adopted as the normalization index, the total input energy exhibits a stable property irrespective of the number of stories. It is finally concluded that the former property on peak drift can hold for the practical design response spectrum-compatible ground motions.

Codebook based Direct Vector Quantization of MIMO Channel Matrix with Channel Normalization

  • Hui, Bing;Chang, KyungHi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.3
    • /
    • pp.155-157
    • /
    • 2014
  • In this paper, a novel codebook generation strategy is proposed. With the given codebooks, two codeword selection procedures are proposed and analyzed for generating the quantized multiple-input multiple-output (MIMO) channel state information (CSI). Furthermore, three different quantization and normalization strategies are analyzed. The simulation results suggest that the proposed 'quantized channel generation method 2' is the best strategy to reduce the quantization and normalization errors to generate the final quantized MIMO CSI.

Study on Improving Learning Speed of Artificial Neural Network Model for Ammunition Stockpile Reliability Classification (저장탄약 신뢰성분류 인공신경망모델의 학습속도 향상에 관한 연구)

  • Lee, Dong-Nyok;Yoon, Keun-Sig;Noh, Yoo-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.374-382
    • /
    • 2020
  • The purpose of this study is to improve the learning speed of an ammunition stockpile reliability classification artificial neural network model by proposing a normalization method that reduces the number of input variables based on the characteristic of Ammunition Stockpile Reliability Program (ASRP) data without loss of classification performance. Ammunition's performance requirements are specified in the Korea Defense Specification (KDS) and Ammunition Stockpile reliability Test Procedure (ASTP). Based on the characteristic of the ASRP data, input variables can be normalized to estimate the lot percent nonconforming or failure rate. To maintain the unitary hypercube condition of the input variables, min-max normalization method is also used. Area Under the ROC Curve (AUC) of general min-max normalization and proposed 2-step normalization is over 0.95 and speed-up for marching learning based on ASRP field data is improved 1.74 ~ 1.99 times depending on the numbers of training data and of hidden layer's node.

On the Signal Power Normalization Approach to the Escalator Adaptive filter Algorithms

  • Kim Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8C
    • /
    • pp.801-805
    • /
    • 2006
  • A normalization approach to coefficient adaptation in the escalator(ESC) filter structure that conventionally employs least mean square(LMS) algorithm is introduced. Using Taylor's expansion of the local error signal, a normalized form of the ESC-LMS algorithm is derived. Compared with the computational complexity of the conventional ESC-LMS algorithm employs input power estimation for time-varying convergence coefficient using a single-pole low-pass filter, the computational complexity of the proposed method can be reduced by 50% without performance degradation.

Quantitative Evaluation of Nonlinear Shape Normalization Methods for the Recognition of Large-Set Handwrittern Characters (대용량 필기체 문자 인식을 위한 비선형 형태 정규화 방법의 정량적 평가)

  • 이성환;박정선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.84-93
    • /
    • 1993
  • Recently, several nonlinear shape normalization methods have been proposed in order to compensate for the shape distortions in handwritten characters. In this paper, we review these nonlinear shape normalization methods from the two points of view : feature projection and feature density equalization. The former makes feature projection histogram by projecting a certain feature at each point of input image into horizontal-or vertical-axis and the latter equalizes the feature densities of input image by re-sampling the feature projection histogram. A systematic comparison of these methods has been made based on the following criteria: recognition rate, processing speed, computational complexity and measure of variation. Then, we present the result of quantitative evaluation of each method based on these criteria for a large variety of handwritten Hangul syllables.

  • PDF

An Amplitude Warping Approach to Intra-Speaker Normalization for Speech Recognition (음성인식에서 화자 내 정규화를 위한 진폭 변경 방법)

  • Kim Dong-Hyun;Hong Kwang-Seok
    • Journal of Internet Computing and Services
    • /
    • v.4 no.3
    • /
    • pp.9-14
    • /
    • 2003
  • The method of vocal tract normalization is a successful method for improving the accuracy of inter-speaker normalization. In this paper, we present an intra-speaker warping factor estimation based on pitch alteration utterance. The feature space distributions of untransformed speech from the pitch alteration utterance of intra-speaker would vary due to the acoustic differences of speech produced by glottis and vocal tract. The variation of utterance is two types: frequency and amplitude variation. The vocal tract normalization is frequency normalization among inter-speaker normalization methods. Therefore, we have to consider amplitude variation, and it may be possible to determine the amplitude warping factor by calculating the inverse ratio of input to reference pitch. k, the recognition results, the error rate is reduced from 0.4% to 2.3% for digit and word decoding.

  • PDF

Spectral Normalization for Speaker-Invariant Feature Extraction (화자 불변 특징추출을 위한 스펙트럼 정규화)

  • 오광철
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.238-241
    • /
    • 1993
  • We present a new method to normalize spectral variations of different speakers based on physiological studies of hearing. The proposed method uses the cochlear frequency map to warp the input speech spectra by interpolation or decimation. Using this normalization method, we can obtain much improved recognition results for speaker independent speech recognition.

  • PDF

Human Motion Recognition Based on Spatio-temporal Convolutional Neural Network

  • Hu, Zeyuan;Park, Sange-yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.977-985
    • /
    • 2020
  • Aiming at the problem of complex feature extraction and low accuracy in human action recognition, this paper proposed a network structure combining batch normalization algorithm with GoogLeNet network model. Applying Batch Normalization idea in the field of image classification to action recognition field, it improved the algorithm by normalizing the network input training sample by mini-batch. For convolutional network, RGB image was the spatial input, and stacked optical flows was the temporal input. Then, it fused the spatio-temporal networks to get the final action recognition result. It trained and evaluated the architecture on the standard video actions benchmarks of UCF101 and HMDB51, which achieved the accuracy of 93.42% and 67.82%. The results show that the improved convolutional neural network has a significant improvement in improving the recognition rate and has obvious advantages in action recognition.

A design of floating-point arithmetic unit for superscalar microprocessor (수퍼스칼라 마이크로프로세서용 부동 소수점 연산회로의 설계)

  • 최병윤;손승일;이문기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1345-1359
    • /
    • 1996
  • This paper presents a floating point arithmetic unit (FPAU) for supescalar microprocessor that executes fifteen operations such as addition, subtraction, data format converting, and compare operation using two pipelined arithmetic paths and new rounding and normalization scheme. By using two pipelined arithmetic paths, each aritchmetic operation can be assigned into appropriate arithmetic path which high speed operation is possible. The proposed normalization an rouding scheme enables the FPAU to execute roundig operation in parallel with normalization and to reduce timing delay of post-normalization. And by predicting leading one position of results using input operands, leading one detection(LOD) operation to normalize results in the conventional arithmetic unit can be eliminated. Because the FPAU can execuate fifteen single-precision or double-precision floating-point arithmetic operations through three-stage pipelined datapath and support IEEE standard 754, it has appropriate structure which can be ingegrated into superscalar microprocessor.

  • PDF