• Title/Summary/Keyword: Inositol 1, 4, 5-triphosphate receptor

Search Result 21, Processing Time 0.018 seconds

Inhibitory effects of artemether on thrombus formation via regulation of cyclic nucleotides in collagen-induced platelets (콜라겐-유도의 혈소판에서 사이클릭 뉴클레오티드의 조절을 통한 Artemether의 항혈전 효과)

  • Chang-Eun Park;Dong-Ha Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.239-245
    • /
    • 2022
  • Although normal activation of platelets is important in the process of hemostasis, excessive or abnormal activation of platelets can lead to cardiovascular diseases. Therefore, the discovery of novel substances capable of regulating or inhibiting platelet activation may be helpful in the prevention and treatment of cardiovascular diseases. Artemether is a derivative of artemisinin, known as an active ingredient of Artemisia annua, which has been reported to be effective in treating malaria, and is known to function through antioxidant and metabolic enzyme inhibition. However, the role of artemether in platelet activation and aggregation and the mechanism of action of artemether in collagen-induced human platelets are not known until now. This study investigated the effects of artemether on platelet activation and thrombus formation induced by collagen. As a result, cAMP level was significantly increased by artemether, and VASP and IP3R, substrates of cAMP-dependent kinase, were phosphorylated. IP3R phosphorylation by Artemether inhibited Ca2+ recruitment into the cytoplasm, and phosphorylated VASP inhibited fibrinogen binding by inactivating αIIb/β3 located on the platelet membrane. Consequently, artemether inhibited thrombin-induced fibrin clot formation. Therefore, we propose that artemether can act as an effective prophylactic and therapeutic agent for cardiovascular diseases caused by excessive platelet activation and thrombus formation.