• Title/Summary/Keyword: Inorganic scale

Search Result 150, Processing Time 0.035 seconds

Study on Abnormal Distribution of High Concentration Chlorophyll a in the East Sea of Korea in Spring Season using Ocean Color Satellite Remote Sensing (해수색 원격탐사에 의한 동해 연근해역 클로로필 a 이상분포 연구)

  • Suh Young-Sang
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.59-66
    • /
    • 2006
  • High concentration of chlorophyll a occurred around the Ulleung Warm Eddy off Ulleung Island in the East Sea of Korea in spring season. The abnormal distributions of chlorophyll a were captured by satellite remote sensing and measured field data. The temporal and spatial scale of the abnormal distributions were around 20days and 50km diameter off Ullung Island. The anomalies were quantified b)'estimated chlorophyll a derived from OCM and SeaWiFS ocean color data from 2000 to 2004. The origin of abnormal hish concentrations was estimated by this study. It was that suspended material discharged from the Nakdong River and the coastal water located in the southeastern part of Korean Peninsula moved to northeastern coast, and then moved to off Ullung island, The high chlorophyll a concentrations including inorganic materials were accumulated by anticyclonic eddy such as the Ullung Warm Eddy around Ullung island in the East Sea of Korea in spring season.

Solid Electrolyte Technologies for Next-Generation Lithium Secondary Batteries (차세대 리튬이차전지용 고체 전해질 기술)

  • Kim, K.M.;Oh, J.M.;Shin, D.O.;Kim, J.Y.;Lee, Y.G.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.76-86
    • /
    • 2021
  • Technologies for lithium secondary batteries are now increasingly expanding to simultaneously improve the safety and higher energy and power densities of large-scale battery systems, such as electric vehicles and smart-grid energy storage systems. Next-generation lithium batteries, such as lithium-sulfur (Li-S) and lithium-air (Li-O2) batteries by adopting solid electrolytes and lithium metal anode, can be a solution for the requirements. In this analysis of battery technology trends, solid electrolytes, including polymer (organic), inorganic (oxides and sulfides), and their hybrid (composite) are focused to describe the electrochemical performance achievable by adopting optimal components and discussing the interfacial behaviors that occurred by the contact of different ingredients for safe and high-energy lithium secondary battery systems. As next-generation rechargeable lithium batteries, Li-S and Li-O2 battery systems are briefly discussed coupling with the possible use of solid electrolytes. In addition, Electronics and Telecommunications Research Institutes achievements in the field of solid electrolytes for lithium rechargeable batteries are finally introduced.

Comparison of taste ingredients between Long-term aged Korean Ganjang and manufactured brewed Ganjang

  • Kyung Tae JANG;In Sook LEE
    • The Korean Journal of Food & Health Convergence
    • /
    • v.9 no.2
    • /
    • pp.19-24
    • /
    • 2023
  • In this study, we tried to compare and analyze the taste components of Korean Ganjang made by a conventional method on a small scale and aged for 3 years and brewed Ganjang produced by a large company. As a result of the study, a total of 22 types of free amino acids in liver were detected. The main amino acids of Korean Ganjang were glutamic acid, lysine, serine, citrulline, alanine, and leucine, then, the main amino acids of brewed Ganjang were leucine, glutamic acid, aspartic acid, valine, serine, alanine. The content of glutamic acid in the composition of free amino acid was 12133.69 mg/mL, more than twice as much as that of Korean Ganjang. The content of leucine (bitter taste) was 5933.37 mg/mL of brewed Ganjang, which was 2.9 to 7 times higher than that of Korean Ganjang. Overall, the content of glass amino acids with savory, sweet, and bitter flavors was found to be very high in brewed Ganjang (BGS) than in Korean Ganjang (KAS, KBS, and KCS). On the other hand, GABA was 456.43 mg/mL for Korean Ganjang KBS, 3.3 times higher than brewed Ganjang. Brewed Ganjang had higher glucose content, inorganic content, iron (Fe), organic acid lactic acid and acetic acid content than Korean Ganjang. Korean Ganjang was found to contain high saturated fatty acids, calcium (Ca), and sodium (Na).

Compressive Strength Properties Surface Coating Lightweight Aggregate ITZ using Inorganic Materials (무기 재료를 이용한 표면코팅 경량골재 계면 압축강도 특성)

  • Kim, Ho-Jin;Jeong, Su-Mi;Pyeon, Myeong-Jang;Kim, Ju-Sung;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.109-110
    • /
    • 2022
  • Recently, it tend to increase the high-rise and large-scale of buildings and the developtment of construction technology can to be applied reinforced concrete structures to high-rise buildings. However, when a high-rise buildings is constructed with reinforced concrete, it has a disadvantage that buildings weight increases. In order to resolve the weight of reinforced concrete structures, various types of lightweight aggregates become development and research. Although lightweight aggregates can be reduced the weight of concrete, the strength of ITZ(Interfacial Transition Zone) is lowered due to its less strength than natural aggregates. In this study, an experimental study was conducted to coat the surface of lightweight aggregates with GGBFS(ground granulated blast furnace slag) to improve the strength of cement matrix mixed with lightweight aggregates. Result of this experimental study shows that the compressive strnegth of the surface coating lightweight aggregates was higher than general lightweight aggregates. Also, it was considered that this is because the pore at the ITZ of the surface-coated lightweight aggregates mixed cement matrix are filled with GGBFS fine particle.

  • PDF

Influence of Discontinuous Layer on Plankton Community Structure and Distribution in Masan Bay, Korea (마산만에서 관찰된 불연속층과 플랑크톤 군집구조와의 관계)

  • HAN Myung-Soo;KIM Se-Wha;KIM Young-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.6
    • /
    • pp.459-471
    • /
    • 1991
  • The community structure and micro-scale distribution of plankton in relation to hydrography were investigated in Masan Bay, Korea in October 1989. Warmer and less saline waters with stratification was located in the inner part of the Pudo Strait, and chlorophyll-a and nutrients were higher. Both phytoplankton biomass and nutrients was changed dramatically around the Strait. Offshore/oceanic species in phytoplankton i.e., Chaetoceres decipiens, Rhizosolenia stolterforthii, Rhizosolenia styliformis and Ceratium trichoceros and zooplankton i.e., Sagitta enflata, Oncaea uenusta and Oikopluera longicaudata occurred mainly in well mixed waters of the outer part. This suggests that discontinuous layer seems to play an important role as an approximate border for the plankton population. This layer was located between Station 3 and Station 4 near the Pudo Strait, since the layer consisted of a series of micro-scale discontinuties of salinity and dissolved inorganic nutrients gradient. Phytoplankton patchs of more than 801e1 were found only in the inner part of the bay. Depletion of silicate caused by a rapid assimilation of phytoplankton in the inner part of the bay seemed to be responsible for the decline of blooms.

  • PDF

Organic Compounds in Condensable Particulate Matter Emitted from Coal Combustion (석탄 연소 시 배출되는 응축성 미세먼지의 유기 성분)

  • Jin Park;Sang-Sup Lee
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.279-287
    • /
    • 2023
  • Fine dust emitted from coal combustion is classified into filterable particulate matter (FPM) and condensable particulate matter (CPM). CPM is difficult to control with existing air pollution control devices, so research is being conducted to understand the characteristics of CPM. Components constituting condensable particulate matter (CPM) are divided into inorganic and organic components. There are many quantitative analysis results for the ionic components, which account for a significant proportion of the CPM inorganic components, but little is known about the organic components. Thus, there is a need for a quantitative analysis of CPM organic components. In this study, aromatic hydrocarbons (toluene, ethyl benzene, m,p-xylene, and o-xylene) and n-alkanes with 10 to 30 carbon atoms were quantitatively analyzed to understand the organic components of CPM emitted from a lab-scale coal combustor. Of the aromatic hydrocarbons, toluene accounted for 1.03% of the CPM organic components. On the other hand, the contents of ethyl benzene, m,p-xylene, and o-xylene showed low values of 0.11%, 0.18%, and 0.51% on average, respectively. Among the n-alkanes, triacontane (C30) showed a high content of 2.64% and decane (C10) showed a content of 2.05%. The next highest contents were shown with dodecane (C12), tetradecane (C14), and heptacosane (C27), all of which were higher than that of toluene. The n-alkane substances that had detectable concentrations showed higher contents than ethyl benzene, m,p-xylene, and o-xylene except for tetracosane (C24).

Characteristics of Phosphorus Accumulation in Organic Farming Fields (유기농업실천농가 포장내 인산의 분포특성)

  • Kim, Pil-Joo;Lee, Sang-Min;Yoon, Hong-Bae;Park, Yang-Ho;Lee, Ju-Young;Kim, Suk-Chul;Choe, Suk-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.4
    • /
    • pp.234-241
    • /
    • 2000
  • Organic farming (OF) is regarded as alternative farming types against general farming system for sustainable agriculture, recently. However, there is little information on effects of OF on soil properties and watershed condition. In order to determine the effects of OF on soil properties, 36, 10 and 8 sites of organic farming (OF) fields of plastic film houses, paddy and orchard were selected in the national scale, respectively, to evaluate their chemical properties and phosphorus distributing characteristics. The average organic matter (OM) contents in organic farming fields were with $44g\;kg^{-1}$ in plastic film houses, $26g\;kg^{-1}$ in paddies and $39g\;kg^{-1}$ in orchard soils higher than the average OM contents in conventional farming (CF) soils. Available phosphates were accumulated to 986 in plastic film house soils and $754mg\;kg^{-1}$ in orchard soils, respectively, over the optimum range. Furthermore, total P (T-P) reached to $2.973mg\;kg^{-1}$ in plastic film houses and $2303mg\;kg^{-1}$ in orchards in OF soils. It could be attained by applying repeatedly low N/P ratio of manure-based compost. In two types of soils inorganic P was dominant with the ratio of 62~80% of T-P, and then residual and organic Ps followed. However. residual-P was dominant in paddy soils with the rate of 50% of T-P. Fractionation of soil extractable P showed that Ca-P was dominant with about $1,330mg\;kg^{-1}$ in upland soils in OF fields, which is affected by high soil pH of over 6.0. However. Fe-P of extractable P was dominant in paddy soils. Water-soluble P was very high with 65 and $26mg\;kg^{-1}$ in plastic film house and orchard soils in OF. From this results. OF regarded as an environment-friendly farming system may cause serious soil deterioration by accumulated phosphorus and may also cause water pollution.

  • PDF

Estimation of Monthly Dissolved Inorganic Carbon Inventory in the Southeastern Yellow Sea (황해 남동부 해역의 월별 용존무기탄소 재고 추정)

  • KIM, SO-YUN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.4
    • /
    • pp.194-210
    • /
    • 2022
  • The monthly inventory of dissolved inorganic carbon (CT) and its fluxes were simulated using a box-model for the southeastern Yellow Sea, bordering the northern East China Sea. The monthly CT data was constructed by combining the observed data representing four seasons with the data adopted from the recent publications. A 2-box-model of the surface and deep layers was used, assuming that the annual CT inventory was at the steady state and its fluctuations due to the advection in the surface box were negligible. Results of the simulation point out that the monthly CT inventory variation between the surface and deep box was driven primarily by the mixing flux due to the variation of the mixed layer depth, on the scale of -40~35 mol C m-2 month-1. The air to sea CO2 flux was about 2 mol C m-2 yr-1 and was lower than 1/100 of the mixing flux. The biological pump flux estimated magnitude, in the range of 4-5 mol C m-2 yr-1, is about half the in situ measurement value reported. The CT inventory of the water column was maximum in April, when mixing by cooling ceases, and decreases slightly throughout the stratified period. Therefore, the total CT inventory is larger in the stratified period than that of the mixing period. In order to maintain a steady state, 18 mol C m-2 yr-1 (= 216 g C m-2 yr-1), the difference between the maximum and minimum monthly CT inventory, should be transported out to the East China Sea. Extrapolating this flux over the entire southern Yellow Sea boundary yields 4 × 109 g C yr-1. Conceptually this flux is equivalent to the proposed continental shelf pump. Since this flux must go through the vast shelf area of the East China Sea before it joins the open Pacific waters the actual contribution as a continental shelf pump would be significantly lower than reported value. Although errors accompanied the simple box model simulation imposed by the paucity of data and assumptions are considerably large, nevertheless it was possible to constrain the relative contribution among the major fluxes and their range that caused the CT inventory variations, and was able to suggest recommendations for the future studies.

The effect of film morphology by bar-coating process for large area perovskite solar modules

  • Ju, Yeonkyeong;Kim, Byeong Jo;Lee, Sang Myeong;Yoon, Jungjin;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.416-416
    • /
    • 2016
  • Organic-inorganic metal halide perovskite solar cells have received attention because it has a number of advantages with excellent light harvesting, high carrier mobility, and facile solution processability and also recorded recently power conversion efficiency (PCEs) of over 20%. The major issue on perovskite solar cells have been reached the limit of small area laboratory scale devices produced using fabrication techniques such as spin coating and physical vapor deposition which are incompatible with low-cost and large area fabrication of perovskite solar cells using printing and coating techniques. To solution these problems, we have investigated the feasibility of achieving fully printable perovskite solar cells by the blade-coating technique. The blade-coating fabrication has been widely used to fabricate organic solar cells (OSCs) and is proven to be a simple, environment-friendly, and low-cost method for the solution-processed photovoltaic. Moreover, the film morphology control in the blade-coating method is much easier than the spray coating and roll-to-roll printing; high-quality photoactive layers with controllable thickness can be performed by using a precisely polished blade with low surface roughness and coating gap control between blade and coating substrate[1]. In order to fabricate perovskite devices with good efficiency, one of the main factors in printed electronic processing is the fabrication of thin films with controlled morphology, high surface coverage and minimum pinholes for high performance, printed thin film perovskite solar cells. Charge dissociation efficiency, charge transport and diffusion length of charge species are dependent on the crystallinity of the film [2]. We fabricated the printed perovskite solar cells with large area and flexible by the bar-coating. The morphology of printed film could be closely related with the condition of the bar-coating technique such as coating speed, concentration and amount of solution, drying condition, and suitable film thickness was also studied by using the optical analysis with SEM. Electrical performance of printed devices is gives hysteresis and efficiency distribution.

  • PDF

Effect of Controlled Light Environment on the Growth and Ginsenoside Content of Panax ginseng C. A. Meyer (광환경 조절이 인삼의 생육과 진세노사이드 함량에 미치는 영향)

  • Jang, In Bae;Yu, Jin;Kweon, Ki Bum;Suh, Su Jeoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.4
    • /
    • pp.277-283
    • /
    • 2016
  • Background: The photosynthetic efficiency cool-season, semi-shade ginseng is normal at low morning temperatures, but drops at high afternoon temperatures. Therefore, optimal plant performance would be ensured if it were possible to control daily light transmission rates (LTR). Methods and Results: Plants were grown in a controlled light environment that replicated 11 AM conditions and comparatively analyzed against plant grown under normal conditions. Growth in the controlled light environment resulted in a 2.81 fold increase in photosynthetic efficiency with no change in chlorophyll content, although LTR were high due to low morning temperatures. Increased aerial plant growth was observed in the ginseng plants adapted to the controlled light environment, which in turn influenced root weight. An 81% increase in fresh root weight (33.3 g per plant on average) was observed in 4-year-old ginseng plants grown in controlled light environment compared to the plants grown following conventional practices (18.4 g per plant on average). With regard to the inorganic composition of leaves of 4-year-old ginseng plants grown in controlled light environment, an increased in Fe content was observed, while Mn and Zn content decreased, and total ginsenoside content of roots increased 2.37 fold. Conclusions: Growth of ginseng under a favorable light environment, such as the condition which exist naturally at 11 AM and are suitable for the plant's photosynthetic activity creates the possibility of large scale production, excellent-quality ginseng.